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Foreword

This Handbook was prepared by Northrop Space Laboratories,
Huntsville, Alabama, for the Dynamics and Analysis Section of
the Aero-Astrodynamics Laboratory of the George C. Marshall
Space Flight Center. Its contents represent a partial fulfill-
ment of the project since additional topics are forthcoming

which, upon completion, will be integrated into the Handbook.
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Abstract jS’/éé

Design information related to the effects of propellant sloshing
is presented for use in both contr~l =nd structural problems. Both
analytical and experimental results are given and all pertinent material
is referenced. Graphs have been included, whenever possible, to expedite
preliminary design calculations. The areas covered are: (1) linearized
fluid theory, (2) equivalent mechanical model theory, (3) results of
analytical studies of liquid oscillations in variously shaped containers
when subjected to different types of excitation, i.e., boundary conditions,
fluid velocity potentials, natural frequencies, liquid force and moment
resultants and equivalent mechanical models, and (4) results of both
analytical and experimental studies concerned with propellant slosh

suppression, with particular emphasis on fixed-ring baffles.
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NOTATION

Radius of circular cylindrical tank

Outer radius of annular or annular-sector tank
Length of rectangular tank in x-direction

Inner radius of ring baffle

Inner radius of annular or annular-sector tank
Local drag coefficient

Radial clearance between tank wall and ring baffle
Effective damping coefficient

Damping coefficient of disc

Damping coefficient of nth slosh mass

Center of gravity of undisturbed liquid

Baffle spacing
Tank diameter

Tank diameter
Depth of baffle below undisturbed free surface

Depth of baffle below undisturbed free surface

Distance of baffle above the undisturbed free surface,
D -d

Force in qi-direction
Dimensionless liquid force, F/pga3
Laplace transform of the force F
Arbitrary function of time
Acceleration due to gravity

. th ;
Damping factor of n liquid mode
z-coordinate for point of attachment of nth pendulum
Depth of liquid measured from tank bottom

, th

z-coordinate of n slosh mass
Mass moment of inertia of fixed mass
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NOTATION (continued)

1 - Effective mass moment of inertia of fluid

Id - Mass moment of inertia of disc

Imn - Mass moment of inertia of mnth slosh mass

IS - Mass moment of inertia of solidified fluid

i - Imaginary unit

; - Unit vector in x-direction

J - Mass moment of inertia of fixed mass

J - Effective mass moment of inertia of fluid

Jmn - Mass moment of inertia cf mnth slosh mass
J,(8) - Bessel function of the 1°C kind of order v and argument B
J;(B) - First derivative of Jv(B) with respect to the

argument B
- Unit vector in y-direction

Kﬁn - Torsional stiffness coefficient of shaft

k - Ratio of inner to outer radius of annular or annular-
sector tank, b/a

k - Unit vector in z-direction

Ln - Pendulum length

M - Fixed mass

Mn - Magnitude of moment after n cycles

Mo - Magnitude of initial moment

Mq. - Moment about qi-axis

M(:) - Laplace transform of the moment M

MB(S) - Laplace transform of the moment M on the baffle

m - Mode of vibration in the ¢ -direction or y-direction
my - Liquid mass
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NOTATION (continued)

h
nt slosh mass
Normal direction

Mode of vibration in the r-direction or x-direction
Number of baffles

Pressure in the qi-direction

Gauge pressure

Generglized coordinate

Radius of circular cylindrical tank

Cvlindrical coordinate, (r,¢,z)

Aspect ratio in xz-plane for rectangular tank, h/a
Aspect ratio in yz-plane for rectangular tank, h/b
Aspect ratio in xy-plane for rectangular tank, a/b
Laplace transform variable

Period of oscillation

Time

Potential function

Timewise maximum fluid velocity

Rotation vector for vorticity, gi + n3 + g&
Velocity component in x-direction

Velocity vector, u{ + vj + wﬂ

Velocity component normal to tank wall

Velocity of container

Velocity component in y-direction

Baffle width measured normal to tank wall

Velocity component in z-direction

Rectangular coordinate, (x,y,z)
Displacement in x-direction
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NOTATION (continued)

x - Translational displacement of nth slosh mass

. . iwt
X , x - Amplitude of displacement function, x = x e Yt oor
X = xosinwt

x(s) - Laplace transformed rectangular coordinate
Y (B) - Bessel function of the an kind of order v and

v argument g

1
Yv(B) - First derivative of Y,(B) with respect to argument 8
y - Rectangular coordinate, (x,y,z)

Translational displacement in y-direction

Y, - Amplitude of displacement function, y = yoelwt
z - Rectangular coordinate, (x,y,z)

Cylindrical coordinate, (r,d,z)

Note: The notation given in articles 5.1.5.2 and 5.1.7.3 is applicable
to these articles only.
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GREEK LETTERS

Ratio of apex angle to 27, G/27
Baffle width parameter in Miles' equation, 2a/W

Apex angle of sector tank or similar configuration
Effective baffle area for a baffle located below
the undisturbed free surface

Effective baffle area for a baffle located above the
undisturbed free surface

\ th
Angular displacement of mn slosh mass
Generalized coordinate, An -0
Roots of an eigenfunction where v = mn, n or (2m-1,n)

Damping factor or damping ratio

Surface displacement of liquid generally measured
at tank wall

Ratio of natural angular frequency to forcing frequency,
w,/w, where Vv = mn, n, or (2m-1,n)

Angular displacement of tank for pitching about y-axis
Amplitude of displacement function, 6 = eoeiwt or
8 = 8 sinwt
o
Laplace transform of the displacement 6
Angular displacement of nth pendulum
Viscosity of liquid
Mass density of liquid
Total velocity potential, ¢1 + ¢2
Velocity potential of container

Velocity potential of liquid

Cylindrical coordinate, (r,¢,z)

Angular displacement for roll about z-axis
Amplitude of displacement function, ¢ = ¢ eimt or
$ = ¢ sinut °



GREEK LETTERS (continued)

Angular displacement for pitching about x-axis
. . _ iwt

Amplitude of displacement function, X = xoe

Angular displacement of disc relative to tank

Forcing frequency

Natural angular frequency for free liquid oscillations
where v = mn, n, or (2m-1,n)

Gamma function of argument v

xi



SPECTAL DEFINITIONS

v, = (e, or E\))g/aw2
«, = (g, or £,) 2‘
p, = (cv or £) E
o, = (C\) or Cv)k
&, = (ev or &V) -:-

where v = mn, m, n, or (2m-1,n)

3 =0

¢m_201¢’
= 2m-l
¢m_ 2a ¢

xii



DEFINITION OF PARAMETERS

Sector Tank

Amn a bmn am K mn K mn K mn
N c “mh”z—-(Ymn*T cosh 5~
™ e (n° -1)cosh « m
mn mn mn
ﬁ aB Kmn Kmn Kmn
pmn = > mn <2m (Ymn - T) sinh > - 2 cosh N
mn € (n° -1)cosh k m
mn mn mn
_ sina _
a =TT = 0
m -
o
- + -
25 (D™ s ing _
a =S5 0— , m=1,2,3,
m7nT -Q
- 2a T (m/bat3/2) .
smn(l-m /ba”e T (m/4a-1/2 /20 Can
E (m/20+2uH )T (m/batu-1/2) | c )
=0 T'(m/4atut+5/2) m/2a+2u+1 " mn
|-cosa
¢ = c?sa , -0
a
- A -
e, =2 LD _cosanl oy 55,

m2172-<;2
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2[(2m-1)/4c][(2m-1)/4a+1] B2m-1)/4a-l]s

Sector Tank (Continued)

2m-1,n

2m-1,n =

2 77 2
iCZm-l, - [(2“"1)/2"‘] }J(2m—1)/20ﬁ(62m-1,n)

Z [c2n- 1)/2°‘+2““:) I (am-1) /2042541 Fom-1,n’
[(2m-1) /20y [ (2m-1)/2a+u+1] [(2m-1) /20+u+2] [(2m 1)/2atu-1

2 [« 2m-1)£(;l

2m-1, 2 " 2
m-1,n {Ezm-l,n - [(Zm-l)/Za} }J(Zm-l)/Za(EZm-l,n)

_ 2§ m_
Lo(emn) B €1n ‘}::o Jm/2u+2u+1(€mn) (Re 2a > 1)
_ 2 S
L (€2m-1 n) h €2m-1,n HEO J(Zm-l)/20+2u+l(€2m-1,n) [Be(Zm-l)/Za > Q
L ( y = —2m-l z [(2m-1)/20+2y+]]
fm-1,n"  daey ) o= [(2m- 1)/4aty] | (2m-1)/4otptl]
J(2m-1)/2a+2u+1(€2m-1,n)

L« _ T(m/2073/2) °Z° (m/20+2u+1)1 (m/2atu-1/2) | c )

2" " r(ayaan1/2) uoo T (m/batu+5/2) m/2e+2u+1 “mn
Lo(e ) - r [(om-1)/2a+3/2) © [ (2m-1)/20+2u+]) T [(2m-1) /boty-1/2} |

2 om0’ e nr[(zm-l)/aa-uz] y=o I‘[(zm-1)/4a+u+5/2]

J2m-1/2a+2p+1(€2m-1,n)
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Quarter-Sectored Tank

- aa b K K K
A = o_mn 2 sinh —%ﬂ - ?“ +Y | cosh —%ﬂ
M ¢ (n° -1)cosh «
mn
= =2 —
am - ™o m = 0o
mil
R 2 B A 1,2,3,..
m 2
m(m“-1/4)
B = Y - — h — - 2 cosh —
mooe (n2 -1)cosh « mn 2 2 2
mn mn mn
16a(m2-1/4) € J (e_ )
; - mn 2m+-2u+1 " “mn

+ou+ +2u-
mn (52 _amZ)JZ e ) (2m+2u+3)(2m+2p-1)
mn 2m’ mn

_ 4
®n ~ 2
(cn-4)J2(en)
. _ 2m(2m-1)e 2m-1,n
2m-1,n 2 27 2
(m-1)[f2m_1,n-4(2m-1) J Tim-22m-1,0
2813 91 € ome1,n
M=o (2m+4)(2m+u+1)(2m+2u-1)(2m+2u-2)
. - -8 © fgp+ﬁ(en)
n L (ut)(uh3)

(E§-4)J§(en) H=o
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Quarter-Sectored Tank (Continued)

£ - 4(2m-1)
2m-1,n 2 2:)
[€2m-1,n-4(2m-1) Jl&m—Z(EZm—l,n)
Le)=2 T 3. .()
o n € & 3+24" n
n w=0
L (e )2—2— EJ (e ) (Re 2m > -1)
o mn € & 2m+2u+l " “mn
mn Uso
L (e ye—2 T (e )
o 2m-l,n € 3 4mt2u-1 "2m-1l,n
2m-1,n H=O
17 2ut3
L) = 1 GG Tl
n k=0
om-1 lm+2u-1
L, (e ) = ‘ J
1 2m-1,n €2m-1,n u£° (2m+u-1)(2mtu) 4m+2u-1(€2m-1,n)
Cor(7/2) v (uA)C(u+l/2)
L (e ) = ) I, .(e)
2 °n snI‘(3/2) o T(ut7/2) 2ut3i’n
Le )= 2m2-1) v Tomton o)
+ -
2" mn € o (2m+2p+3) (2m+2u-1)
® J (e )
L ( ) = 2(4m-1)(4m-3) 4ut2p-1"%2m-1,n
2'¢2m-1,n z (4m+2u+1) (4m+2u-3)

C2m—1,n u=o
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Eighth-Sectored Tank

2 00
- 4m(4m°-1) € (4m+2u+1) J1+m+2u+1(€mn)
- + + -1 +
mn (52 -16m2) JZ (¢ ) p=o (2mt) (2mtu+1) (2mtu-1) (2m+u+2)
mn 4m " “mn

f = 8m
mn 2 2
(emn-16m ) J4m(€mn)

= (Gtutl) I, o4 (e )

_ 2m
Lyten) = ¢ Z (2mu) (2mHu+l)
mm U=o
Annular Tank
- ‘ - Iy o' ' r
2[2/7¢ - j\0 )] ) =3E Hve)-ae) e D

A =
" a2y (ERan) + 6Ao ) (1-02) | |
Cl("n) = Jl(ﬁn k) Y (&n) - Jl(En) Yl(gn k)

r

r t
) - Jm/2ct(£mn) 'Ym/ZQ(Emn ;)

Cm/2a(pmn) = Jm/Zu(Emn a Ym/2t'x(£mrl

. 1
Cm/20(°mn) = Jm/2<1l(£mn k) Yl(gm) - Jm/ZG(Emn) Ym/ZG(Emn k)

C(Zm-l)/Za(DZm-l;n) = Cm/2a(ptm) given above if whenever m -
occurs, it is replaced by (2m-1)

Annular-Sector Tank

A a bmn a Kmn Kmn ‘mn]
(Cmn> = (n2 (cm)[Z sinh - -\ + Ymn) cosh -

mn £ -1) cosh x m
mn' mn mn
Boml= ® Pmn : (am [(Y Kﬂ) sinh iﬂ 2 cosh fgn_]
Dm 1 (ﬂz -1) cosh k %n mn 2 2 2
mn' mn mn
— Sina _
a_ s m=o
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Annular-Sector Tank (continued)

2a NZ(E )
b = mn :
mn 2,2 2.2 2,,.2¢2 2,2 _ 5
[é/“ Emn -k Cm/Za(cmn)] - (m”/4a gmn) [4/" Emn Cm/Za( mn)]
1 - cosa _
< = - ’ = 0
m a
- m -
- -1
c = 23 1)cose L ot
m T -a
£2m-1,n 3
J o p2m-1,nC(Zm-l)/20<02m-1,n)d02m-1,n
_ 2m-1,n
®2m-1,n E2m-1,n )
2
EZm-l,nf  s-1,0G2m-1720 P 2m-1,n"% 2m-1,n
2m-1,n
E2m-1 n
f ? 1+(2m-1)/2a G Yo
2m-1,n (2m-1)/20" 2m-1,n" " 2m-1l,n
L __%om-1,n
2m-1,n &, _
(m-1)/20 ¢ Z°-Lm ) g
2m-1,n o p2m-1,nC(2m-1)/2G(p2m-1,n p2m-1,n
2m-1,n
E2m-l n
E(Zm-l)/Zu f ’ pl-(Zm-l)/ZaC | 0 Ydo
2m-1,n 2m-1,n (2m-1)/2a" 2m-1,n"" "2m-1,n
_ %om-1,n
2m-1,n E2m-1 n
' P c? (p )dp
o 2m-1,n (2m-1)/2c¢""2m-1,n""" 2m-1l,n
2m-1.n
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Annular-Sector Tank (continued)

N )=y ey Lm/batl/2+1/2) E (m/2a+2u+1 )T (m/batytl /2-1/2) .
j mn m/2% " “mn Emnl‘(m/‘tu+1/2-j/2) =0 IM(m/4atut3/2+3/2)

i
[Jm/2a+2u-1(5mn) -k Jm/20+2u+l(k€mna

m
' . (-2—-1) C:mu-m/Za(m/ZQ_u_l)!(1_k2u-m/20+1+.1)
+ Jm/ZG(Emn) n Z 2u-m/2a

=0 (2u-m/2a+1+§)2

(-1)%¢ 1_km/20t+2u-1+j ) E::lm/2<:t+2u

2
t

b m/2a+u

cth\fla

u!(m/2u+u)!(m/2<x+2u+1+j)2 2

m/2a+2u

© U
N 21(j+1 7 (-1) (k&;mn)

o u!(m/2a*u)!(m/20+2ut1+y) 2™/ 2020

[ln <“ian 1 L@
(=) - Fvutl) - S v Gy +yutl)

(-1 )u Em/20+2u

]
E R[N

@

mn
Z m/2a+2u
—o

=0 u!(m/2a+u)!(m/2a+2u+l+j) 2

13
[ln 3B) - 26 ) - 5 <m/2w+1>i]§ . 1=0,1,2,...

where  ¥(z) =d—lﬂd§i =-v+(z-1) AZ (A+1')1(Hz)
=o

z is the argument, (W+l) and (m/2a+u+l) is the above equation.
Y = 0.5772157 is Euler's constant.
NJ(EZm-l,n) = NJ(gm) if in the above equation for Nj(cm), m is

replaced by (2m-1).
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I. Introduction

Fuel sloshing is defined as any periodic motion of a contained liquid
propellant and results from the missile's oscillatory motion about its
flight trajectory. The most likely causes of such disturbances are gust
loads, control modes, and structural modes. If any of these excitations
have frequencies in the vicinity of the resonant frequency of a contained
liquid, violent sloshing will occur. Since fuel and oxidizer amount to an
extremely high percentage of the gross vehicle weight, the magnitudes of
the l11quid force and moment resultants are significant and cannot be
geglected. A thorough knowledge of the magnitude and location of the
external forces and moments acting on a space vehicle is required for
making stability and structural investigations. Consequently, the effects

.of liquid propellants on their containers while undergoing forced vibrations
have been investigated both analytically and experimentally. The results of

such studies are found in Chapter 1IV.

The stability of a missile can be increased by reducing the force and
moment resultants caused by the oscillating propellant and increasing the
sloshing frequency. Increasing the eigen frequencies of the liquid de-
creases the depth below the surface to which the disturbances extend. The
above fact can be accomplished by utilizing longitudinal partitions which
effectively reduce the sloshing liquid ﬁass and increase the frequencies of
liquid oscillations. Also various types of baffles and floats can be used
to help damp liquid motion. To evaluate the effectiveness of such anti-
slosh devices, its damping factor and effect on the eigen frequencies of
the fluid need to be known. Consequently, there has been a considerable
amount of analytical and experimental work done in this area. The results
of such investigations are found in Chapter V.

1-1.




The exact formulation and solution to the problem of oscillations of
a contained liquid with a free surface are extremely complex. To simplify
the matter, it is convenient to assume that the fluid is nonviscous and
the flow is irrotational, thereby permitting the use of potential theory.
The problem then reduces to obtaining the velocity potential from Laplace's

equation solved with the appropriate boundary conditions.

The overall problem of missile stability can be investigated more
easily if the liquid is replaced with a dynamically equivalent mechanical
model. The equations of motion for a model are derivable from either la-
grange's equations or simple equilibrium theory and from these equations,
the force and moment resultants can be obtained. The characteristics of
the model are then determined so that the force and moment resultants,
frequencies of oscillation, and mass and inertial characteristics are
identically equal to those of the liquid. Also by using equivalent me-
chanical models, the nonlinear nature of forced damped liquid oscillations
can be approximated by equivalent linear damping. This makes it possible
to obtain finite results near the resonant frequencies of the liquid, which
was not possible in the fluid analysis, since the liquid was assumed to be

inviscid.



IT. Fluid Theory (9)

2.1 Assumptions

The difficulty in formulating and obtaining the exact solution to tl.e
problem of oscillations of a contained liquid is simplified by making several
assumptions concerning the nature of the fluid and the type of flow encount-
ered. These assumptions are: (1) the fluid is both incompressible

(p = constant) and frictionless (y = o), (2) the flow is irrotational

I

(J o), and (3) there are no sources or sinks; that is,the c6bntainer is

neither draining nor filling.

2.2 Basic Equations

Irrotationality is a necessary and sufficient condition that the vel-

<>
ocity V can be expressed as the gradient of a velocity potential ¢, that is,

I
<+

ve (2-1)

Because of incompressibility and the nonexistence of sources and sinks, the

equation of continuity reduces to Laplace's equation,

e =y (2-2)
For an incompressible and frictionless fluid, irrotational flow, and con=-
servative body forces, those forces derivable from a potential function,

Bernoulli's energy equation is




where U is a potential function. Since gravity is the only important body

force, then U = gz, and since the velocity is assumed to be small, the term
containing 32 is neglected. Also since any arbitrary function of time can

be added to the velocity potential without changing the flow it represents,
the function F(t) can be conveniently absorbed by ¢. Consequently, the

equation of motion reduces to

(- %

r % _
;o teetar =0 (2-3)

@

From this expression, the pressure p is found to be

P=-p -.a.l <+ gzl (2-4)

For zero or uniform surface gauge pressure (p = 0 or p = P, = const.)

the surface displacements can be found as follows:

—,—gr=_1 20
Zqurface ¢ - ¢ T - g ot (2-5)

P
where, in the case of uniform surface gauge pressure, the constant =2
p

is absorbed by ¢. The resultant liquid force acting on a container is then

given by

F = I p. dA
9y A 9 (2-6)

where qy is a generalized coordinate and Fqi and pqi are components of the
force and pressure distributions in the qi-direction. Taking the z-axis
to be the longitudinal axis of the container, the resultant liquid moment
about a line perpendicular to the xz-plane and passing through the point

(0,0,z) is given by

Mo T I Pg, (= t2)A+ I Po, * ¥ (o)
Asorrow 1




2.3 Boundary Conditions

2.3.1 Velocity Potential. The total velocity potential ¢ is composed
of two parts: 01, the velocity potential of the container which is assumed
to be small and ¢2, the velocity potential of the liquid. These potentials

must satisfy Laplace's equation in the following manner:
vZo = v2(0, t 0,) =0 (2-8)

Since for a particular excitation the container velocity is known, the

velocity potential of the container can easily be determined from equation

(2-1)

where the resulting constant of integration can be absorbed by 02.

2.3.2 Free Oscillations. Consideration of free oscillations is nec-

essary in order to determine the natural frequencies of liquids in variously
shaped containers. For the occurrence of free liquid oscillations, the
container must be at rest (61 = 0), thus 01 = constant. Consequently,

¢ = ¢2 since the constant can be absorbed by 02. In order to avoid separation
over the wetted surface, the velocity of the fluid normal to the container

wall must be identical to that of the container itself, that is,

a¢d
__2= -‘; =0 (2-10)
an n

Also, the pressure variation over the free surface must be equal to zero.

Accordingly, the linearized free surface condition is

2
9 ¢2
2

¢
+ga—£=0
at z

(2-11)
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2.3.2 Forced Oscillations. When the container is subjected to harmonic

excitation, the total velocity potential, ¢ = ¢1 + ¢2, must be considered.
Since over the wetted surface the normal velocity of the fluid must be the

same as that of the container, it follows that

o
5=V (2-12)
n n

The linearized free surface condition corresponding to zero pressure var-

iation at the free surface is

oz (2-13)

The free surface boundary condition is actually composed of both a zero-
pressure variation condition and a kinematic condition. In the kinematic
condition, second and higher order terms were neglected thereby linearizing
the free surface boundary condition. When the amplitude of the fluid is
large relative to the tank dimensions, the effect of nonlinearify can become
important, i.e., the magnitude of the higher order effects might not be
negligible. Therefore, in order that the slope of the free surface be
small, the resulting frequency of fluid oscillation must not be in the
immediate neighborhood of a natural free surface frequency. Even so,
relatively large amplitudes are possible when the container is also large.
Also, it should be noted that the free surface condition given here and
in Article 2.3.2 above is valid only in the case of a constant gravitational
field. Consequently, the information presented in this handbook is applicable
only for ground test applications.

The expression for the natural frequencies for free liquid oscillations
is as follows:
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w =B ¢ tanh (-ll e ) (2-14)
mn a mn a mn

where
g = the acceleration due to gravity
a = the radius of the tank
h = the depth of liquid in the tank
€m the roots of an eigen function

It is observed that the eigen frequencies are proportional to the square

root of g. However, when the vehicle experiences a large acceleration

normal to the mean free surface of the fluid, g becomes the effective |
longitudinal acceleration of the missile. Therefore, the natural frequencie:
of the liquid remain a constant while the vehicle is at rest but vary when
the missile is in flight. It is also seen that the frequencies are inversely
proportional to the square root of a and thereby decrease with an increase

in the cross-sectional area of the container. The influence of tank geo-
metry upon the frequencies of the liquid is also exhibited by the value of

€ . The liquid height has relatively no effect on the frequencies for

mn

h»>a. As h decreases below a, the frequencies tend to zero.

2.4 1Initial Conditions

Assume the harmonic forcing function is equal to zero for all time

t equal to and less than zero (t < 0).
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IIT. Equivalent Mechanical Model Theory
An equivalent mechanical model is an assemblage of springs, dashpots,
masses, and massless rods arranged in such a manner as to represent the
dynamic behavior of a complex mechanical or non-mechanical system.. Con-
sideration is given here to those models which are dynamically equivalent
to a liquid oscillating within its container. Dynamic equivalence is
taken to mean the equivalence.of force and moment resultants, frequencies

of oscillation, and mass and inertial characteristics.

There are two reasons for using equivalent mechanical models to repre-
sent the sloshing behavior of a contained liquid. Since the problem of
forced damped liquid oscillations is actually nonlinear in nature, an exact
solution is practically impossible. However, through the use of an equiva-
lent mechanical model, a good approximation cén be made by introdﬁcing
equivalent linear damping in the form of dashpots, thereby making it possible
to obtain finitevresults near the resonant frequencies of the liquid. This
was not possible in tﬁe fluid analysis, since the liquid was assumed to be
inviscid. Secondly, the overall problem of missile stability is simplified

in that the vehicle's equations of motion are not so complex.

When a container partially filled with fluid is excited, the liquid
in the bottom of the tank is little disturbéd, whereas the liquid near the
free surface oscillates. Analogously, the model is composed of a fixed mass
in the bottom of the container to represent the essentially rigid or non-
sloshing part of the liquid and a movable mass near the top of the container
to represent the sloshing part of the liquid. The sum of the fixed and
movable masses of the model are taken equal to the total mass of the liquid

and the ratio of the movable mass to the total mass of the liquid increases
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as the depth of the liquid in the container decreases. Also, the fixed mass
and the movable mass (when the fluid is not oscillating) are located along
the longitudinal axis of the container at such distances from the tank
bottom as to yield the same inertial characteristics for rotation about any
axls perpendicular to and passing through the longitudinal axis. Therefore,
the fixed mass is located near the center of gravity of the undisturbed
fluid and the location of the movable mass shifts towards the center of
gravity of the fluid as the liquid level decreases.

The kind of movable mass to be used and its restraints are dependent
on the type of excitation encountered, namely: harmonic translation,
harmonic pitching, or harmonic roll. For a particular model, harmonic
translation and harmonic pitching have the following relationship: (a)
translation refers to an excitation in a d;rection perpendicular to the
longitudinal axis of the container while (b) pitching implies an excitation
about an axis perpendicular to the direction of translation and the con-
tainer's longitudinal axis. For translational and pitching excitations, two
‘possibilities exist to represent a movable mass and its constraints; either
a spring-mass system whose motion is restrained by springs and dashpots
aligned in the direction of translation or a pendulum-mass system having its
massless lever arm attached to thg longitudinal axis of the container.
Because '"small oscillation theory" has been assumed, the amplitude of the
pendulum motion must be small, thereby maintaining the pendulum mass at a
relatively constant distance from the container bottom. Therefore the
inertial characteristics of the pendulum mass are essentially the same as

those of the spring mass.

For roll excitation, which is always taken to be about the longitudinal
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axis of the container, two possibilities exist for representing a movable
mass and its constraints; (a) a torsional pendulum whose shaft coincides
with the container's longitudinal axis or (b) a torsional spring-mass system

attached to the longitudinal axis of the container.

Because of the defined arrangement of the constraints of movable
masses with respect to the direction of excitation, the model becomes a
single degree of freedom system, i.e., only one generalized coordinate
is necessary to specify the position of the movable mass at any particular
time. Note, however, that when a container partially filled with fluid is
excited, the liquid can oscillate in various modes of vibration depending
on the frequency and amplitude of the forcing function. Thus, for a
circular cylindrical tank,or some other similar configuration, it is possible
to have modes of vibration in both the radial and tangential direction. 1In
other words, an oscillating liquid can exhibit several degrees of freedom.
In order for a model to simulate these various modes of vibration, it is
necessary to add additional movable masses to the model. Each new mass
increases the model's degree of freedom by one and thereby makes it possible
to represent an additional liquid mode of oscillation. For this reason the
subscript mn is used on various parameters in order to clarify which mode of
vibration is of interest. m is to represent the mth mode of vibration in the
tangential direction and n is to represent the nth mode in the radial direct-
ion for circular cylindrical tanks or similar configurations. In many cases,
the only mth mode to be excited is m=1. Thus, when only the subscript n is

used, it is to be understood that w=l.

Tn order for s narticular movable mass to oscillate at the same
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frequency as the liquid mode it represents, the following definitions have

to be made: (1) the spring constant is defined as the slosh mass times

the square of the natural angular frequency of the fluid, (2) the length

of the pendulum axis is defined as the acceleration due to gravity over the
square of the natural angular frequency of the fluid, and (3) the damping
coefficient is defined as the glosh mass times the damping factor times the
natural angular frequency of the fluid. Also, for the torsional pendulum,
the torsional stiffness of the shaft is defined as the mass moment of inertie
of the disc times the natural angular frequency and the damping coefficient
of the disc is defined as the mass moment of inertia times the damping

factor times the square of the natural angular frequency. The damping factor

must be determined either analytically or experimentally (see Chapter V).

Component values of the model are determined so that the forces and
moments exerted by the médel are identically equal to those exerted by the
liquid. This is done by making a term-wise cémparison of the force and
moment equations derived from hydrodynamic aspects with those derived from
the model. In order to put the fluid and model equations into similar form
for comparison, it is many times necessary to expand certain terms of these
equations into series. Even though the model equations contain damping
terms and the fluid equations do not, the comparison of equations is still
valid because the modes of vibration change little as long as the amount

of damping remains small.



IV. Rigid Tanks
4.1 Introduction

The following sections present results of analytical studies of liquid
oscillations in containers of various shapes when subjected to different
types of excitation. Each section is concerned with a particular container
shape, either circular cylindrical, sector, quarter-sectored, eighth-
sectored, annular, annular-sector, or rectangular and is preceded by a
table of contents, a diagram showing the container and its coordinate system,
and other information pertinent to the material that follows. The containers

are assumed to have exhibited rigid-body behavior, The boundary conditions

and resulting fluid velocity potentials, natural frequencies and liquid
force and moment resultants are given along with equivalent mechanical

models. The elements of these models are defined both analytically and

graphically.

The orthogonal coordinate systems to which the force and moment result-
ants are referenced are identical to those shown in the figures, the coordin-
ate origins always being located at the center of gravity of the undisturbed
fluid. However, in the fluid analysis, it is frequently convenient to
translate the coordinate origin along the z-axis to the free surface of the
undisturbed liquid, thereby referencing the velocity potential to such a
system. This fact presents no difficulty since equation (2- 7 ); used for
calculating the resultant moment,gives the moment referenced to any point
(0,0,z). Therefore, it is necessary to take z = -h/2 when the velocity
potential is referenced to the fluid surface and z = O when the velocity

potential is referenced to the center of gravity of the undisturbed fluid.

The orthogonal coordinate system to which a particular velocity
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potential is referenced is determined in the following manner. The z-axis
is always identical to that shown in the appropriate figure. The location
of the coordinate origin along the z-axis will be either at the center of
gravity of the undisturbed fluid or at the undisturbed free liquid surface.
Upon examination of the z-coordinate at which the corresponding free surface
boundary condition is evaluated, the location of the coordinate origin is

obvious.

Also, it should be mentioned that, for a particular container, super-
position of force and moment resultants resulting from several types of

excitations is possible because of the linearized theory used herein.



4.2 Circular Cylindrical Tank
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Container: The tank is a right circular cylinder of radius a and is filled
with a liquid to a depth h.

Coordinate System: The origin of the xyz-system is located at the center of
gravity of the undisturbed fluid and the origin of the x'y'x' systém is
located at the geometric center of the tank base.

References: (4,44,and 52)

Comments: The terms I and ¢, occurring in the model elements, must be
experimentally determined, generally from torsion spring experiments
of a sealed container of fluid. Their values are dependent upon
container shape and the type of liquid.
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Table 4-3. Model Analysis

Circular Cylindrical Tank Spring-Mass Model

Excitation: Harmonic Translation and/or Pitching

o m—
——

Figure 4-1 shows a diagram of the spring-mass model used in representing
the dynamic response of a liquid in a circular cylindrical tank when sub-
jected to harmonic translation in the x-direction and/or pitching about the
y~axis.

Coordinate System:

The origin is located at the center of gravity of the undisturbed
liquid.

Model Description:

The components of the system are as follows:

1. A fixed mass M having a moment of inertia I is rigidly connected
to the tank and is located on the z-axis at a distance H below
the coordinate origin.

2. A set of movable masses m_ is distributed along the z-axis when
the tank is at rest at diStances h_ above the origin. These modal
masses are constrained by spring-dgshpot systems, having spring
stiffness coefficients k_ and viscous damping coefficients c_,
to remain in the xy-plang and to move only in a direction pa?allel
to the x-axis. Translational displacements of these masses with
respect to the container are denoted by X

3. A massless disc having a moment of inertia I, is located at the
coordinate origin. Its motion is confined to rotation about the
y-axis and is cushioned by a dashpot having a viscous damping
coefficient c,. The angular displacement of the disc relative to
the tank is defined by ¥.

Equations of Motion:

The equations, obtained through Lagrange's equations, are as follows:

1. Force Equation:
F = - M(x +HO) - nZ;l m(x +X +hg)
2. Moment Equation:
M =-(1+MH2)5-1(§+;5)+g E mx - of mh (x_ +h8)
y d n=] 0 2 nnn n
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Table 4.3 Model Analysis (continued)

Circular Cylindrical Tank Spring-Mass Model

Excitation: Harmonic Translation and/or Pitching
—— = ———— ]

Equations of Motion (continued):

3. Disc Equation:
B+ ) + =
I ( V) cd$ 0
4. Slosh-Mass Equation:
m(+% +hb)+mgux +kx -mgd=0
n n n nTnnn nn n

From these equations, the model force in the x-direction and the moment about
the y-axis can be found (see Table 4-4).
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Figure 4-1. Equivalent Mechanical Model
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Table 4-5.

Model Elements

Circular Cylindrical

Tank ipring-Mass Model

Excitation:

ttarmonic Translation and/or Pitching

Natural Frequency

4

w s n tanh < (Fig. 4-2,4-3)
spring Constant k mnw: (fig. 4-4,4-5)
Damping Coefficient -
of Slosh Mass “n mngnwn

. -2
Damping Coefficent c z 1 4 c . (£1 bt 4o7)
i 2 = ge 4-0, G-

of Disc d Sa - 1)2
Ratio of Slosh Mass |, 2 tamh (x)
to Fluid Mass m 2 (fig. 4-8)

L (e -1)«x

n n

Ratio of Fixed Mass M o m
to Fluid Mass — 1- ) ;ﬂ (fig. 4-9, 4-10)

L no L
Ratio of 3losh Mass ||h | 1 k
Coordinate to Fluid ho = 3 1 - :— tanh 7 (fFig. 4-11)
Depth n

Coordinate to Fluid

Ratio of Fixed Mass Ile TE
M

Depth h n
Moment of Inertia _Eg_.z a 2 1 [h 2 +1
of Solidified Fluid 2 |h 12 \a 4 (fig. 4-12)
mLh
Moment of Inertia Id — 8 (3)2 E [1 - (Z/Kn) tanh (Kn/Z)]
of Disc (cd = 0) mLh2 ho2 (c2 - e
n n
Moment of Inertia Id Is -1 -2
of Disc (c, # 0) = 1+ = (fig. 4-13)
d m h2 m h? 2(I 1)
L L A W
. 2

Moment of Inertia I _ Is - T4 M (ﬁ)z - E ‘n (Egj
of Fixed Mass mLh mLhz mLh2 m h no ML h
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Table 4-6. Model Analysis

Circular Cylindrical Tank Pendulum Model

Excitation: Harmonic Translation and/or Pitching

o t— ———
—————— ——— =1

Figure 4-l4shows a diagram of the pendulum model used in representing the
dynamic response of a liquid in a circular cylindrical tank when subjected
to harmonic translation in the x-direction and/or pitching about the y-axis.

Coordinate System:

The origin is located at the center of gravity of the undisturbed liquid.

Model Description:

The components of the system are as follows:

1. A fixed mass M having a moment of inertia I is rigidly connected to
the tank and is located on the z-axis at a distance H below the
coordinate origin.

2. A set of movable masses m_ 1s distributed along the z-axis when the
tank is at rest. These modal masses are pendulums having massless
lever arms of length L attached to the z-axis at distances H_ above
the origin. They are constrained by dashpots having viscous Hamping
coefficients c_ to remain approximately in the xy-plane and to move
approximately parallel to the x-axis. Angular displacements of the
pendulum with respect to the tank (z-axis) are denoted by An.

3. A massless disc having a moment of inertia I, is located at the
coordinate origin. Its motion is confined to rotation about the
y-axis and is cushioned by a dashpot having a viscous damping
coefficient cq. The angular displacement of the disc relative to
the tank is defined by ¢.

Equations of Motion:

The equations, obtained through Lagrange's equations, are as follows:

1. Force Equation:

= . . + ') - . o _ o
F, M(x + HO) nzl m_ (:x + LA (H Ln)e]

2. Moment Equation:
[L A F(H - L )5}
n ' n n
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Figure 4-6. Model Analysis (continued)

Circular Cylindrical Tank

Pendulum Model

Excitation: Harmonic Translation and/or Pitching

|

Equations of Motion (continued):

3. Disc Equation:
.. + Ldd + L] _
1 (6 + ) de 0
4. Slosh-Mass Equation:

m [>}'+LX + (H -L)BJ
n nn n n

+m é w L i

nrnnnn

- 6 =
m 8 0]

From these equations, the model force in the x-direction and the moment about
the y-axis can be found (see Table 4-7).
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Table 4-8. Model Elements

Circular Cylindrical Tank Pendulum Model

Excitation: Harmonic Translation and/or Pitching

2 _¢g
Natural Frequency W= € tanh K (fig. 4-15)
_ 2
Pendulum Length Ln = g/wn
Damping Coefficient - =
of Slosh Mass €2~ ™8n“n
- -2
Damping Coefficient c =2 1+ c
of Disc d 2(I _ 1)2
wi's
Ratio of Slosh Mass TB - 2 tanh (Kn)
to Fluid Mass m, (62 -1«
n n
Ratio of Fixed Mass | M c ™
to Fluid Mass m L z m (fig. 4-16, 4-17)
™ n=o "L
Ratio of Pendulum lHn - Lnl 1 4 Kq
Mass Coordinate — % 3 [ 1 - P tanh 7
to Fluid Depth n

Ratio of Fixed Mass |

® m H - L
Coordinate to Fluid EI: T& Z a1
h M = im h
Depth n=o L
Moment of Inertia Is _ [a 2 1l h 2 + 1
of Solidified Fluid 2 h 12 a 4
mLh
Moment of Inertia Id —g (2 2 E [1 - (Z/Kn) tanh (Kn/Z)]
of Disc (cd = o) h2 h o ( 2 1) e
y €n n
I 1 -1 -2
Moment of Inertia 5 =3 5 1 +'—§———£——:—§
of Disc (cd # 0) mLh mLh w (IS - I)
I I 2 © m H -1 2
Moment of Inertia I _ s_ d _ M (ﬂ) - z _n X n n
of Fixed Mass 2 m h2 h2 m h neo ™. h
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Table 4-9. Model Analysis

Circular Cylindrical Tank Pendulum Model

Excitation: Arbitrary Translation and/or Pitching

—
——

Figure 4-18 shows a diagram of the pendulum model used in representing the
dynamic response of a liquid in a circular cylindrical tank when subjected to
an arbitrary translation in the x-direction and/or pitching about the y-axis.

Coordinate System:

The origin is located at the geometric center of the tank bottom.

Model Description:

The components of the system are as follows:

1. A fixed mass M having a moment of inertia I is rigidly connected to
the tank and is located on the z-axis at a distance H above the
coordinate origin.

2. A set of movable masses m_ is distributed along the z-axis when

the tank is at rest. The modal masses are pendulums having massless
lever arms of length L, attached to the z-axis at distances H, above
the origin. Angular displacements of the pendulums with respect to

the tank (z-axis) is denoted by A, and 6 is a space fixed coordinate
defining the pitching angle of the container. .Angular displacements
of the pendulums are therefore defined by a generalized space fixed

coordinate, I' =i, - 8. :

Equations of Motion:

The equations, obtained through Lagrange's equations,are as follows:

1. Force Equation:
F=-(M+m)§-[Mn+m(H-L)]§ -m LA
n n n n nnn

2. Moment Equation:

M= - [MH +m (H - Ln)] X - [MHZ +m (H - Ln)2 + I] 8

Tt 4 ) ] o
[ m (H_ Ln)} 6 -mL (H - LA
+ A
mngLn n

3. Slosh Mass Equation:

. 2 1 . .

A = o — - -

Lt An I [~x + (Hn Ln)e gej
n

Using the method of Laplace transforms, the force and moment have been repre-
sented as transformed variables, which thereby become a function of the La-
place-transform operator s (see Table 4-10).

k-33




|

1
Ln
n
O~
Hp
Tn =2, -6
D =
H
/"\ 0 Tank
1 { an »Base -x
Circular Cylindrical Tank Pendulum Model

Excitation: Arbitrary Translation and/or Pitching

Figure 4-18. Equivalent Mechanical Model
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Table 4-11. Model Elements

Circular Cylindrical Tank

Pendulum Model

Excitation: Arbitrary Translation and/or Pitching
. 2 _g
National Frequency | w_ =2 €_ tanh «
n a n n
Pendulum Length L = &7
n W
1
2 tanh Kn
Slosh Mass mn = m 2
k (e - 1)
n n
Fixed Mass M= mo - Z m
n=1 10
- K
Slosh Mass IH - L ' =hl1 - 2 cosh n
Coordinate n n ' K_sinh x
n n
h 2 2(2 + « sinh k¢ -cosh x )
Fixed Mass |H|= mm%m [% + 2 5 - T L 1 L
Coordinate L n 4h k(e - 1) cosh
n n n
. 8k +(2K2-8)sinhK -2k coshk
Moment of Inertia I=mhr?|ll.__mn n n__n n _
of Fixed Mass L 3 K3(62 - 1) cosh x
n n n
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4,3 Sector Tank
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Container: The tank is a sector of a right circular cylinder of radius a
and filled with a liquid to a depth h. The vertex angle is denoted
by Qe

Coordinate System: The origin is located at the center of gravity of the
undisturbed fluid which would be contained in a right circular cylinder
generated by revolving the sector tank about the z-axis. The x-axis
must lie in the sector wall.

References: (4)

- ™, 37w
Comments: The results given in this section are not valid for a = 5’ 5.
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1

Jontaluer: The tank i{s a right circular cylinder of radius a divided by
longitudinal partitions intersecting at right angles, a - m/2, and is
tilled with liquid to a depth h.

Coordinate System: The origin is located at the center of gravity of the

undisturbed fluid and the x-axis must lie in a sector wall.

References: (4, 60)

Comments: The results given in this section are applicable to only one

sector, i.e., the boundary conditions and resulting velocity potential,
natural frequencyv, and force and moment resultants are responses due to
liquid oscillations in only one sector (except for the material concern-
equivalent mechanical models which applies to the complete tank of
four sectors),
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Table 4-20. Model Analysis

Quarter-Sectored Tank Spring-Mass Model

Excitation: Harmonic Translation and/or Pitching

——

—————

Figure 4-19 shows a diagram of the spring-mass model used in representing
the dynamic response of a liquid in a quarter-sectored tank when subjected
to harmonic translation in the x-direction and/or pitching about the y-axis.

Coordinate System:

The origin is located at the center of gravity of the undisturbed liquid.

Model Description:

The components of the system are as follows:

1.

A fixed mass M having a moment of inertia I is rigidly connected
to the tank and is located on the z-axis at a distance H below
the coordinate origin.

A set of mov?ble masses m_ is distributed along the z-axis when
the tank is at rest at distances h above the origin. These modal
masses are constrained by spring- dgghpot systems, having spring
stiffness coefficients k__ and viscous damping coefficients ¢

to remain in the xy- planenand to move only in a direction paraTlel
to the x-axis. Translational displacements of these masses with

respect to the container are denoted by X on®

A massless disc having a moment of inertia Iy is located at the
coordinate origin. Its motion is confined to rotation about the
y-axis and is cushioned by a dashpot having a viscous damping
coefficient cy. The angular displacement of the disc relative to
the tank is defined by ¥.

Equations of Motion:

The equations, obtained through Lagrange's equations, are as follows:

1.

Force Equation:

L -]

F = - M(; +—Ha) Z Z m (x + x + h 6)
X mp mn
m=1 n=1
Moment Equation:
M—-(I+MH)9-I(e+)+
y d v & mgl nzl mnmn
X ): x b B)
mn mn

m-l n=1
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Table 4-20. Model Analysis (continued)

Quarter-Sectored Tank Spring-Mass Model

Excitation: Harmonic Translation and/or Pitching

Equations of Motion (continued):

3. Disc Equation:
Bty L
I (6 +y) +cw =0
4. Slosh-Mass Equation:

m (x+x +h 6)+m g w %x +k x -m gp =0
mn mn mn mn°mn mn’ mn mn mn mn

From these equations, the model force in the x-direction and the moment about
the y-axis can be found (see Table 4-21).
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Table 4-22.

Model Elements

Quartered-Sectored Tank

Spring-Mass Model

Excitation: Harmonic Translation or Pitching
2 _8
Natural Frequency © = 2 o tanh Ko
_ 2
Spring Constant kmn =mow
Damping Coefficient c =m g
of Slosh Mass mn mn 8m “mn
Tn — 64 tanh “mn [EanZm(emn) (fig. 2"5?;
Ratio of My, nzncmn(egm-l&mz).]gm(emn) (4m2-1)
Slosh Mass
to Fluid Mass ' ozu s . )] o J2m+2u+1<emn)
+2u+
pmo  ZT2WFLTTEnT oo (omtou+3) (2mi2u-1)
o © m
Ratio of Fixed M _ 1 - Z z mn
Mass to Fluid Mass m n—o m=o ML
Ratio of Slosh Ihmnl 1 4 Kon
Mass Coordinate - 3 1 - P tanh - (fig. 4-22)
to Fluid Depth mn
Ratio of Fixed m, o © m h
Mass Coordinate I%l = b_d.l:: z z (Qn‘m>(—?>
to Fluid Depth =0 N=0 L
Moment of Inertia
of Solidified = (%)2 [%5 (‘;’-)2 + %]
Fluid mLh
I ©» = (-1)"2b K
—4 - @2Llig 7 g LUSULLY | tanh 2|
mh2 h 2 =0 n=o T 52 2
Moment of Inertia L mo 1 a8 “mn mn
of Disc (cd = o0) Jp_ ) 262 L2(e ) tanh x
m2 mn’ 4 g e ) mn . mn
4m”-1 o m (4m~-1) k
mn
-] [+ ] 2
Moment of Inertia 1 - Is - Id _ M (_}1)2 Z Z h (h_mﬂ>
of Fixed Mass mLh2 mLhz mLh2 m h o n—o ML h
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Ratio of Slosh Mass to Fluid Mass

M NONSLOSHING MASS RATIO
0.4 VERSUS
FLUID HEIGHT RATIO

0.3

0.2

Ratio of Fluid Depth to Tank Radius

Figure 4-21. Model Element Graph

4-60

=4



Ratio of Slosh Mass Coordinate to Fluid Depth

h MASS LOCATION HEIGHT RATIO
VS.
— FLUID HEIGHT RATIO
T
0.4
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Ratio of Fluid Teph to Tank Radius

Figure 4-~22. Model Element Graph
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Table 4-23. Model Analysis

Quarter-Sectored Tank Pendulum Model

Excitation: Harmonic Translation and/or Pitching

—

Figure 4-23 shows a diagram of the pendulum model used in representing the
dynamic response of a liquid in a quarter-sectored tank when subjected to
harmonic translation in the x-direction and/or pitching about the y-axis.

Coordinate System:

The origin is located at the center of gravity of the undisturbed liquid.

Model Description:

The components of the system are as follows:

1. A fixed mass M having a moment of inertia I is rigidly connected to
the tank and is located on the z-axis at a distance H below the
coordinate origin.

2. A set of movable masses m is distributed along the z-axis when the
tank is at rest. These modal masses are pendulums having massless
lever arms of length L  attached to the z-axis at distances H above
the origin. They are constrained by dashpots having viscous damping
coefficients ¢ to remain approximately in the xy-plane and to move

. mn
approximately parallel to the x-axis. Angular displacements of the

pendulum with respect to the tank (z-axis) are denoted by Amn'

3. A massless disc having a moment of inertia I, is located at the
coordinate origin. TIts motion is confined to rotation about the
y-axis and is cushioned by a dashpot having a viscous damping
coefficient c¢,. The angular displacement of the disc relative to
the tank is defined by y.

Equations of Motion:

The equations, obtained through Lagrange's equations, are as follows:

1. Force Equation:

o o

— - M (1] + .. _ . + . _ bid
F, (x + HE) Z Emmn ’:x L A+ Lmn)e]
m=1 n=1

2. Moment Equation:

2 e . e o

= . (I + - +9) +
M, (1 + M) - I,(6 +§) gz meannxmn
m=1 n=1
- § E mmn(Hmn B Lmn) [_Lmnxmn e - Lmn)e}
m=1 n=1
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Table 4-23. Model Analysis (continued)

Quarter-Sectored Tank Pendulum Model

Excitation: Harmonic Translation and/or Pitching

—— ]

Equations of Motion (continued):

3. Disc Equation:
u+"+ .=
Id (6 + ) cq¥ 0
4. Slosh-Mass Equation:

m {; +L %X +(H_ -L )6] +m g w L X -m gb=0
mn mn” mn mn mn mn°mn mn mn mn mn

From these equations, the model force in the x-direction and the moment about
the y-axis can be found (see Table 4-24).
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Figure 4-23.

Equivalent Mechanical Model
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Table 4-25. Model Elements.

Quarter-Sectored Tank Pendulum Model

Excitation: Harmonic Translation and/or Pitching

Natural Frequency w2 =8¢ tanh «
mn a mn mn
Pendulum Length Ln = ;%‘
mn
Damping Coefficient - -
of Slosh Mass cmn mmn gmn “rn
an _ 64 tanh « eanZm(emn)
Ratio of T I S L CHIR I B L D
Slosh Mass
to Fluid Mass ® J (e )
o 2m+2u+l Y Tmn hd (2m+2u+3)(2m+2u-1)
Ratio of Fixed Mo, E 'i-' Tn
Mass to Fluid Mass m n—o m=o my
Ratio of Pendulum IHmn 3 Lmnl= 1 1 - 4 tanh ¥mm
Mass Coordinate to h 2 Kmn 2
Fluid Depth
m L o m H - L
Ratio of Fixed I_}il _ _L Z z mn mn mn
Mass Coordinate h M c\m h
to Fluid Depth m=0 n=0
Moment of Inertia Is — (_a_)2 1 (1_1)2 +1
of Solidified h2 h 12 "a 4
Fluid b
IIF -
4 ay21l g I I RN A T\
2 ‘h’ )2 L 2 k2
mLh m=0 n=o ‘lacmn nn
Moment of Inertia
of Disc (¢, = o)
d sz(em ) 2€2 L.(e__) tanh kK
mn 2
4m”-1 ° mn (4m2-1) «
mn
I I bind ® m H - L 2
Moment of Inertia I s d I_n__(E)z 2 z mn { mn mn
of Fixed Mass - - - -
mLh2 mLh2 mLh2 oL h =0 n=o o, h
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Table 4-28. Model Analysis

Quarter-Sectored Tank Torsional Pendulum Model

Excitation: Harmonic Roll

——

Figure 4-24 shows a diagram of the torsional pendulum model used in
representing the dynamic responseof a liquid in a quarter-sectored tank when
subjected to harmonic roll about the z-axis.

Coordinate System:

The origin is located at the center of gravity of the undisturbed liquid.

Model Description:

1. A fixed mass having a mass moment of inertia J is rigidly connected
to the tank and is located on the z-axis at the base of the tank.

2. A disc having a mass moment of inertia J_ ,  is connected to a shaft
having a torsional stiffness K, which is in turn rigidly attached
to the tank. Viscous damping is introduced along the periphery
of the disc, the damping coefficient of which is cmn. Angular
displacement of the disc relative to the tank is denoted by B -

Equations of Motion:

The equations, obtained through Lagrange's equations, are as follows:
1. Moment Equation:
M=-J§m+z ZJ($+§)
n
z m=1,3,5,... n=o O mn

2. Slosh Mass Equation:

o« I © -
) J 0 (G+E)+] ¢ &
m=1,3,5,... n=0 O mg m=1,3,5,... ngb mn’ mr
+ Z z K B =0
m=1,3,5,... n=0 T ™0

From these equations, the model moment about the z-axis can be found
(see Table 4-29).
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Excitation: Harmonic Roll

Figure 4-24. Equivalent Mechanical Model
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Table 4-30.

Model Elements

Quartered-Sectored Tank

Torsional Pendulum Model

Excitation: Harmonic Roll

w2 =8¢ tanh K
Natural Frequency . 2 “mn mn
Torsional Stiffness | . _ w2
of Shaft mn mn mn
Damping Coefficient c =71 & w
of Slosh Disc mn mn gmn mn

8m. a2 (2f -e_) L,(c_) tanmh K

J - __ L~ [_ n n 1''n n
Moment of Inertia mn "2 Kn
of Slosh Disc
(c. =o0) 2(f -me ) L. (e ) tanh X ]

mn _ mn mn 1" mn mn
2
m(m“-1) Kmn
8m a2 (n> +ig n_-1) (2f -e ) L.(c_) tamh ¥

1 - L mn ~°mn mn [_ n n 1 'n n
Moment of Inertia m 2 (nz-l) K
of Slosh Disc n n
(cmn # o) ) Z(fmn-memn) Ll(emn) tanh Kmn]

2, 2 2
m” (m -1)(nmn-1) K o
Moment of Inertia J = 1 n 2
of Solidified Fluid s 2 M2
Effective Moment of | 5 _ ; [1 _8 E 1 ]
Inertia of Fluid s 1t2 n=1,3,5... mz(m+1)2
o« a0

Moment of Inertia of _ =
Fixed Mass J=J- Z _E_OJ
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4.5 Eighth-Sectored Tank
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Container: The tank is a right circular cylinder of radius a divided by

longitudinal partitions intersecting at equal angles, a = n/4, and is
filled with liquid to a depth h.

Coordinate System: The origin is located at the center of gravity of the
undisturbed fluid and the x-axis must lie in a sector wall.

References: (60)

Comments: The results given in this section are applicable to only one
sector, i.e., the boundary conditions and resulting velocity potential,
natural frequency, and force and moment results are responses due to
liquid oscillations in only one sector. (except for the material concern~
ing equivalent mechanical models which applies to the complete tank of

eight sectors),
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Table 4-33. Model Analysis

Eighth-Sectored Tank Torsional Pendulum Model

Excitation: Harmonic Roll

Figure 4-7 shows a diagram of the torsional pendulum model used in
representing the dynamic response of a liquid in an eighth~sectored tank when
subjected to harmonic roll about the z-axis.

Coordinate System:

The origin is located at the center of gravity of the undisturbed liquid.

Model Description:

1. A fixed mass having a mass moment of inertia J is rigidly connected
to the tank and is located on the z-axis at the base of the tank.

2. A disc having a mass moment of inertia J,, is connected to a shaft
having a torsional stiffness K. which is in turn rigidly attached
to the tank. Viscous damping is introduced along the periphery
of the disc, the damping coefficient of which is cy,. Angular
displacement of the disc relative to the tank is denoted by B .

Equations of Motion:

The equations, obtained through Lagrange's equation, are as follows:

1. Moment Equation'

Mz—-JB +Z ZJ ¢+6)

m=1,3,5,... n=o

2. Slosh Mass Equation'

(-] -] (-
I 6+ 8. +] I cpnB
m=1,3,5,... n=o ™ m=1,3,5,... n=o 0 ™
+ ] ) B =0
m=1,3,5,... n=o M0

From these equations, the model moment about the z-axis can be found
(see Table 4-34).
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Table 4-35. Model Elements

Eighth-Sectored Tank

Torsional Pendulum Model

Excitation: Harmonic Roll

2 _8
Natural Frequency mn A € tanh Ko n
Torsional Stiffness K =7 2
of Shaft mn mn mn
Damping Co?fficient c =J & W
of Slosh Disc mn mn “mn  mn

. 2 z - .
Moment of Inertia ~ 32m a -(fmn-Zmemn) L2(€mn) tanh x 7 (fig.
of Slosh Disc Jmn = > 2 4-28,
(¢ = o0) ™ m(4m”-1) « 4-29)
mn mn
-32mLa2(n2 +‘ié n - 1)
J _ mn mn mm .
Moment of Inertia mm nz(nin - 1)
of Slosh Disc _ _
(¢ # o) (f -2me ) L.{¢ ) tanh«
mn mn mn 2 mn mn
m(4m2 - 1)«
mn
Moment of Inertia J = 1 n a2
of Solidified Fluid s 2 L
00
Effective Moment of] 3 _ | [1 _ 8 ) _._J;___.}
Inertia of Fluid s 1T2 m=1,3,5,... mz(m+1)2
Mome?t of Inertia 7=73 - z Z 3
of Fixed Mass “ L “mn
m=14345,... N0
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4.6

Annular Tank
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Container: The tank consists of two concentric right circular cylinders
having an inner radius r = b and an outer radius r = a. The space be-
tween the concentric walls is filled with liquid to a depth h.

Coordinate System: The origin is located at the center of gravity of
the undisturbed fluid.

References: (52 and 63)

Comments: The terms 1 and ¢, occurring in the model elements, must be
experimentally determined, generally from torsion spring experiments
of a sealed container of fluid. Their values are dependent upon
container shape and the type of liquid. The model element graphs
are given for k = b/a = 0,5. These graphs are, within +10 per cent,
applicable for values 0.3 < k < 0.7.
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Table 4-38. Model Analysis

Annular Tank Spring-Mass Model

Excitation: Harmonic Translation and/or Pitching

——

Figure 4-30shows a diagram of the spring-mass model used in representing
the dynamic response of a liquid in an annular tank when subjected to harmonic
translation in the x-direction and/or pitching about the y-axis.

Coordinate System:

The origin is located at the center of gravity of the undisturbed

liquid.

Model Description:

The components of the system are as follows:

1.

A fixed mass M having a moment of inertia I is rigidly connected
to the tank and is located on the z-axis at the distance H below
the coordinate origin.

A set of movable masses m is distributed along the z-axis when
the tank is at rest at distances h_ above the origin. These modal
masses are constrained by spring—dgshpot systems, having spring
stiffness coefficients k_ and viscous damping coefficients cn,

to remain in the xy-plane and to move only in a direction parallel
to the x-axis. Translational displacements of these masses with
respect to the container are denoted by X . '

A massless disc having a moment of inertia I, is located at the
coordinate origin. Its motion is confined to rotation about the
y-axis and is cushioned by a dashpot having a viscous damping
coefficient ¢,. The angular displacement of the disc relative to
the tank is defined by y.

Equations of Motion:

The equations, obtained through Lagrange's equations, are as follows:

1.

2.

Force Equation:

F =-M+H8) - ] m (X +X_ +h_6)
X nzln n n

Moment Equation:

M o= - (I+M2)8 -1

s b + .. + - ® e + .
y dke V) tg E ™n*n Z mnhn(xn hne)

n=1 n=1
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Table 4-38. Model Analysis (continued)

Annular Tank Spring-Mass Model

Excitation: Harmonic Translation and/or Pitching

Equations of Motion (continued):

3.. Disc Equation:

B +9) +e. b=
Id(+w) cdw o_o
4. Slosh-Mass Equation:
m(x +% +h 6)+tmgex
n n n nnn

+kx -mg6=0
n nn n

From these equations, the model force in the x-direction and the moment about
the y-axis can be found (see Table 4-39).
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Annular Tank Spring-Mass Model

Excitation: Harmonic Translation and/or Pitching

Figure 4-30. Equivalent Mechanical Model
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Table 4-40. Model Elements

Annular Tank Spring-Mass Model

Excitation: Harmonic Translation or Pitching

2 _8
Natural Frequency wo =3 En tanh Kn
Spri C tant k = w2 :
pring Constan S (fig. 4-31)
Damping Coefficient - - .
of Slosh Mass °a " ™ &1 “n (fig. 4-32)
. - -2
Damping Coefficient _ - c
£ Di g ¢ |17 2
of Disc w2(1 -1)
s
= =
Ratio of m An_2/1r£n - kC1(°n),ta“h Ko (fig. 4-33)
Slosh Mass ol 2 (fig. 4-34)
to Fluid Mass L (1-k") «
Ratio of M @ m
Fixed Mass — =1 - Z —
to Fluid Mass ™ n=o "L (fig. 4-35)

Ratio of Slosh 'hnl 1 4 Ky
Mass Coordinate D=3 1 - — tanh 7 (fig. 4-36)

to Fluid Depth n
Ratio of Fixed © Im h
Mass Coordinate '%I= ;L ) (;fl)(ﬁﬂ) (fig. 4-37)
to Fluid Depth n=o L
Moment of Inertia Is _ a2 l1 h.2 1
of Solidified Fluid 7 =@ 7 Q) e
mLh

N RN | (VRN
Moment of Inertia Id . (5)2 Z An_2/F€n kCl(on)J 1 2/xntanh(xn/2)
of Disc (cd = 0) o h2 e L (1-k2) £
Moment of Inertia Id _ Is“I [1 + 52 ]
of Disc (cd # o) mLh2 mLh2 mZ(Is_i)Z

2

I ] h
Moment of Inertia I _ Is 4 M (ﬂ) _ z Tﬂ _n
of Fixed Mass wh? mh? mh: W b oz m (b (fig. 4-39)
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Table 4-41. Model Analysis

Annular Tank Pendulum Model

Excitation: Harmonic Translation and/or Pitching
— =

Figure 4-40shows a diagram of the pendulum model used in representing the
dynamic response of a liquid in an annular tank when subjected to harmonic
translation in the x-direction and/or pitching about the y-axis.

Coordinate System:

The origin is located at the center of gravity of the undisturbed liquid

Model Description:

The components of the system are as follows:

1. A fixed mass M having a moment of inertia I is rigidly connected to
the tank and is located on the z-axis at a distance H below the
coordinate origin.

2. A set of movable masses m, is distributed along the z-axis when the
tank is at rest. These modal masses are pendulums having massless
lever arms of length L, attached to the z-axis at distances H, above
the origin. They are constrained by dashpots having viscous damping
coefficients ¢, to remain approximately in the xy-plane and to move
approximately parallel to the x-axis. Angular displacements of the
pendulum with respect to the tank (z-axis) are denoted by An'

3. A massless disc having a moment of inertia I; is loacted at the
coordinate origin. Its motion is confined to rotation about the
y-axis and is cushioned by a dashpot having a viscous damping
coefficient cy. The angular displacement of the disc relative to
the tank is defined by V.

Equations of Motion:

The equations, obtained through Lagrange's equations, are as follows:
1. Force Equation:
L~
F.=-Mx +H8) - | m E; +LX + @ -L )6}
x n n n n n
n=1
2. Moment Equation:
L] L ]
2 . . e
= . + 6 - 8 + A- - .
M (1 +m9)8 - 1.8 +y)+g g m LA g m(H - L)
n=1 n=]
A+ (H-L 5]
[Ln n (H-1L))
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Table 4-41. Model Analysis (continued)

Annular Tank Pendulum Model

Excitation: Harmonic Translation and/or Pitching

Equations of Motion (continued):

3. Disc Equation:
6+ ) +c b=
1 ( v) cgb =0
4. Slosh~Mass Equation:

m [x-i-L)\ + (H -L)9]+méwLi -mgb=0
n n' n n n nn nnn n

From these equations, the model force in the x-direction and the moment about
the y-axis can be found (see Table 4-42).
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Table 4-43. Model Elements

Annular Tank

Pendulum Model

Excitation:

Harmonic Translation and/or Pitching

> =
) - B
Natural Frequency w o= En tanh %
Pendulum Length L - g-“%- (fig. 4-41)
Damping Coefficient — -
of Slosh Mass S T
- c?
Damping Coefficient]c, = ¢ 1 + —m—
d 2 =.2
w (I -I)
s
Ratio of Tg . An[é/wgn - kCl(on)]tanh “n
Slosh Mass 2
to Fluid Mass L (1-k™) xn
Ratio of ® m
Fixed Mass M- 1 - Z T~
to Fluid Mass o n=o 'L
Ratio of Pendulum - r | K
1
Mass Coordinate n o %= 3 1 -— tanh(519 (fig. 4-42)
to Fluid Depth n
Ratio of Fixed m ® m H =-1L
Mass Coordinate l%l; ﬁL Z 2 n h I
to Fluid Depth n=o \"L
Moment of Inertia. Is _(a 2 1 [n 2 L1
of Solidified Fluid 2 h 2 \a A
mLh
Moment of Inirtia Id _ a 2 = An[Z/WEn - kCl(Uni][1-(2/‘n)tanh(‘n/2ﬂ
of Disc (cd = 0) 5= 4 h Z '
mLh n=o (1-k°) ‘n

Moment of Inertia Id - Is-I [ 1+ 52 ]

. 3 -
of Disc (cd + 0) mLhz m wZ(I _1)2

© H - L 2

Moment of Inertia I _ Is_ _ Ty _ M (E) _ z TE { n n]
of Fixed Mass mLh2 mLh2 mLhZ m h n=o m h
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4.7 Annular-Sector Tank

Table of Contents
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Container: The tank is a sector of an annular tank having an inner radius
r=b and an outer radius r=a and is filled with a liquid to a depth h.

Coordinate System: The origin is located at the center of gravity of the
undisturbed fluid which would be contained in an annular tank generatec
by revolving the annular-sector tank about the z-axis. The x-axis
must lie in the sector wall.

Reference: (4)

(XY
le
=3

Comments: The results given in this section are not valid for & =
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4.8 Rectangular Tank
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Container: The tank is rectangular having base dimensions a and b in the
x and y directions, respectively, and is filled with a liquid to a depth
h.

Coordinate System: The origin is located at the center of gravity of the
undisturbed fluid.

References: (76)
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Table 4-52. Model Analysis

Rectangular Tank Spring-Mass Model

Excitation: Harmonic Translation and/or Pitching

m————]

Figure 4-43 shows a diagram of the spring-mass model used in represent-
ing the dynamic response of a liquid in a rectangular tank when subjected to
harmonic translation in the x-direction and/or pitching about the y-axis.

Coordinate System:

The origin is located at the center of gravity of the undisturbed
liquid.

Model Description:

The components of the system are as follows:

1. A fixed mass M having a moment of inertia I is rigidly connected
to the tank and is located on the z-axis at a distance H below the
coordinate origin.

2. A set of movable masses m_ is distributed along the z-axis when
the container is at rest at distances h_ above the origin. These
modal masses are constrained by springsnhaving spring stiffness
coefficients k_ to remain in the xy-plane and to move only in a
direction paraTlel to the x-axis.

Equations of Motion:

The equations, obtained from either an equilibrium or energy formulation,
are as follows:

1. Slosh Mass Equation for Translation:
mx +*kx=mx w2 sinwt
n n n o
2. Slosh Mass Equation for Pitching:
x + = + ' i
m x + k x (mng hnkn)eos1nwt

From these equations, the model force in the x-direction and the moment about
the y-axis can be found (see Table 4-53).
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6 = 0 sinwt
o

Rectangular Tank

Spring-Mass Model

o

Excitation: Harmonic Translation and/or Pitching

Figure 4-43.

Equivalent Mechanical Model
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Table 4-~54. Model Elements

Rectangular Tank

Spring-Mass Model

Excitation:

Harmonic Translation and/or Pitching

Natural Frequency wi = f (2n+1)n tanh{(2n+1)nr1]
Spring Constant k =m_ w (fig. 4-44)
n n n
Ratio or Spring hk 8 tanhz[(2n+1)nr1]
Constant to Fluid - 1 = 2
Weight L8 [( 2n+1 )w]
_+_ .
Ratio of Slosh o _ 8 tanh[(Zn 1)“rl] (fig. 4-46)
Mass to Fluid Mass my B2n+1)"]3r1
Ratio of Fixed M E "
, — =1 - — (fig. 4-46)
Mass to Fluid Mass m neo ML
Ratio of Slosh Mass Ihn' 1 tanh[(2n+1)wr1/2]
Coordinate to —_— = - .
Fluid Depth ho 2 (2ntidmr /2 (fig. 4-45)
Ratio of Fixed IHI mo m hn
Mass Coordinate h = - ¥ z (;r-)(g—) (fig. 4-45)
to Fluid Depth n=o \ L
Moment of Inertia Is _ 1 [63)2 n 1]
of Solidified Fluid m h2 12 t'h°
L
- I
I _ s 1. 4 4 768
m h2 m h2 r24 1 (r2+ 1)w5r
Effective Moment of L L 1 1 (fig. 4-47)
Inertia of Fluid © tanh[(2n+1)nr1/2]J
=0 (2n+1)5
Moment of Inertia I 1 M - h 2
; — = - z ’n ) (fig. 4-47)
of Fixed Mass 2 2 L, m h
mLh mLh My, n=o
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Table 4-57. Model Analysis

Rectangular Tank Torsional Spring-Mass Model

Excitation: Harmonic Roll

il

Figure 4-48 shows a diagram of the torsional spring-mass model used in
representing the dynamic response of a liquid in a rectangular tank when sub-
jected to harmonic roll about the z-axis.

Coordinate System:

The origin is located at the center of gravity of the undisturbed liquid.

Model Description:

The components of the system are as follows:

1. A fixed mass M having a moment of inertia I is rigidly connected to
the tank and is located on the z-axis at a distance H below the
coordinate origin.

2. A set of movable masses mo is constrained by torsional springs
having stiffness coefficients k n to remain in planes parallel to the
xy-plane and at distances hmn above it.

Equation of Motion:

The equation, obtained from either an equilibrium or energy formulation,
is as follows:

. _ .
Imn¢ kmn¢ kmn¢051nwt

From this equation, the moment about the z-axis can be found (see Table 4-58).
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Table 4-59. Model Elements

Rectangular Tank

Torsional Spring-Mass Model

Excitation: Harmonic Roll
Tgr
w2 = 1 '\/r2(2m+1)2 + (2n+1)2
mn h 3
Natural Frequency
tanh [ﬂr1 \/r§(2m+1)2 + (2n+1)2 ]
Torsional Spring Kk = wZ
Constant mn mn mn
Moment of Inertia 1 =0 a2 + b2
of Solidified Fluid s 12
Effective Moment of I _ 4 + 768 o tanh [(2n+1)171’3/2]
Inertia of Fluid T - 2 5 2 3 (fig.4-
s rytl ow r3(r3+l) n=o (2n+1) 49,4-50)
2 2 2]2
T _ 768[r3(2m+1) - (2ntl1) .
I 6 2 4 4[ 2 2 2]
Moment of Inertia s " (1+r3)(2m+1) (2nt1) r3(2m+1) + (2nt1)
of Slosh Mass [ 2 2 2]
tanh nrlwfr3(zm+1> + (2nH1) ttg. 4ot
mr) Vv r§(2m+l? + (2nt1)2 4-50)
Moment of Inertia I i © o Imn
of Fixed Mass T = I - Z Z 1
s s ™m0 n<0 s
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5.1.1 Introduction. Sloshing becomes detrimental when the wave
mplitudes of tanked propellants, agitated by oscillations, approach
breaking height. This sloshing of the liquid exerts considerable forces
on the missile structure, affects the controls and renders any liquid
level measuring devicé inaccurate. This means that a sloshing damping
device has to be provided. The term damping usually refers to the
checking of a motion due to resistance, as by friction or any other
similar cause. It is of especial significance in connection with the
diminishing amplitude of an oscillation, as that of a liquid swinging
inside a moving container. Unless energy is supplied during each cycle,
the amplitude of the fluid motion falls off at each successive oscillation
by an amount commonly expressed in terms of the decrement, or damping
factor, which is the ratio of any one amplitude to that next succeeding

it in the same sense and direction.

Many of the force and moment resultants given in Chapter IV require
a damping factor before they can be evaluated. The accuracy of these
equations and consequently their usefulness is therefore very much dependent
on the value chosen for the damping parameter. When a large propellant
tank has no damping devices the resistance to fluid motion at the container
walls is generally accepted to be nil. That is, the fluid damping is
negligible. However, when damping systems are introduced, the resulting
damping factor depends on many variables and is thereby extremely difficult
to obtain. For some damping devices, such as fixed ring baffles, a sound
analytical approach can be effectively used while in most cases an experi-

mental approach is the only way of obtaining a meaningful damping factor.
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5.1.2 Design Requirements of an Anti-Slosh Device. Studies

(40), (42) show that the depth below the undisturbed free surface at
which the liquid no longer participates in surface oscillations is
approximately equal to one-fourth the tank diameter. Therefore a damping
device need only extend to such a depth. The liquid level, however,
changes as the container empties thereby requiring either a damping device
capable of moving down at a rate equal to the draining rate or a damping
device which is fixed to the wall but extends to the bottom of the con-
tainer. The first stipulation suggests some type of floating device,
whereas the second suggests either longitudinal partitions or an evenly
spaced baffle system covering the inner periphery of the tank and distri-

buted throughout the depth of the liquid.

The amount of damping needed to stabilize a missile is deter-
mined from analog or digital computer studies of the over-all dynamic
characteristics of the vehicle. In some cases, stability studies might
indicate no need for anti-slosh baffles in a particular tank. Generally,
however, the designer is faced with the problem of optimizing a damping
system by integrating into his design the requirements that follow:

1. Produce a high damping effect.

2. Pay a minimum weight penalty.

3. Utilize minimum space.

4, Absorb the liquid forces and moments or transfer them uniformly
to the tank structure, thereby avoiding points of high stress

concentration.
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Function throughout environmental changes, such as temperature.

Not interfere with other operations, such as the emptying of the
container or the measurement of the liquid level.

Be easy to assemble.

Not cause damage to the tank or other built-in equipment during

transportation of the missile.

Not interfere with cleaning operations.



Ring Baffles

4

= — —
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where g amplitude of liquid measured at the tank wall

h = depth of liquid

a
il

depth of ring below undisturbed free surface
a = radius of right circular cylinder

w = ring width

References: (32, 35, and 41).

Ring baffles are most effective against lateral slosh which has large

vertical components of fluid velocity near the tank wall.

Investigations by Silveira, Stephens and Leonard (35) indicate that:
1. For a given baffle depth:
(a) The damping factor increases as the baffle width increases
(fig. 5-10).
(b) The frequency increases as the baffle width decreases

(fig. 5-15).
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Ring Baffles (continued)

2. Based on the total surface of a baffle, the highest mean damping
factor appears to be afforded by ring baffles as compared to the

baffle types depicted in fig. (5-77).

Investigations by Garza and Abramson (32) indicate that:
1. For a given baffle depth:
(a) With the hole size constant:
(1) The frequency increases for increasing percent per-
foration (fig. 5-2).
(2) The damping factor increases for decreasing percent
perforation (fig. 5-8).
(b) With the percent perforation constant:
(1) The frequency increases for increasing hole size
(fig. 5-3).
(2) The damping factor increases for decreasing hole size
(fig. 5-7).
2. Damping produced by perforated baffles is consistently lower

than that produced by a solid baffle (fig. 5-7 and 5-8).



5.1:3 Ring Baffles. Because of the complexity of the boundary con-

ditions, a theoretical approach for predicting the damping of a device is
extremely limited. In particular, a fixed ring baffle is the only damping
device for whiéh an analytical approach exists. For this reason, it is
necessary to resort to an experimental approach consisting of ground
oscillation testing of a full scale or model tark containing the damping
device to be evaluated. If the size of the model is small as compared to
the prototype, the use of similitude theory is advisable in order to obtain
reasonable similarity of fluid motion. Since it is generally not possible
to model equal values of all dimensionless parameters affecting the fluid
motion, an appropriate nondimensional modeling parameter must be chosen.
Viscous forces and surface tension are small and can therefore be neglected
whereas, forces resulting from both the velocity of the fluid and the
inertial effects of acceleration cannot. Acceleration is of especial
importance because of the three following effects on slosh phenomena:

1. During ground tests, the eigen frequencies remain constant,

whereas, during flight conditions they vary as the square

root of the longitudinal acceleration.
2. The wave amplitudes are approximately inversely proportional

to the longitudinal acceleration.

3. The damping factor is proportional to the square root of the
liquid amplitude.

4. The force and moment resultants are proportional to g.

Therefore, Froude's number, being the ratio of fluid velocity forces

to inertia forces, 1s selected for the modeling parameter.
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5.1.3.1 Ring Baffles: Experimental. Each of Articles 5.1.3.1.1

through 5.1.3.1.3 presents an analysis concerned with a particular reference
from which experimental data in the form of graphs is presented. The analyses
are composed of two parts; the first being concerned with experimental
procedure and the second with interpretation of results. This information

is meant to aid the designer in both evaluating data of a particular source
and comparing data of different sources. Also, this information should be

of use in similitude applications since most of the data is obtained from

model studies.

5.1.3.1.1 Investigations by Garza and Abramson (32) are

outlined below.

Fixed Ring Baffles

1. Baffle thickness: 0.018" to 0.030".

2. Ratio of baffle width to tank radius, 3 = 0.157.

3. Perforation:

(a) The hole size was 0.079" while the percent perforation
was varied.

(b) The percent perforation was 30% while the hole size
was varied.

4. Attachment to container: The baffles were secured to the
tank by four 1/8" x 1/3" steel strips attached at 90° apart
around the outer edge of the ring. They were supported
through angle iron brackets bolted to the upper flange of

the tank. The outer edge of the ring was turned down,



giving the ring an L type cross section which stiffened the
ring considerably, but had little effect on damping (see

Figure 5-1).

Container, Excitation and Instrumentation

The container was a rigid-wall circular cylindrical tank sup-
ported by four dynamometers. All tests were conducted for three amplitudes
of translational excitation. Because of the rather significant effects of

excitation amplitude, measurements were made for various values ranging from

X
0.00184 < 5> < 0.00823, and then all data was presented in terms of RMS

values. Table 5-1 gives the resonant frequencies for each of the various

tests conducted.

Damping Factor

Experimental values of the damping factor YS were obtained from
resonant peaks of experimental force response curves. Theoretical values
of Y  were calculated from Miles' equation (Article 5.1.3.2.1) using liquid
surface amplitudes Lo measured at the tank walls. Table 5-2 gives the

damping values for each of the various tests conducted.

5.1.3.2 Investigations by Silveira, Stephens, and Leonard (35)

are outlined below.

Baffles (Figure 5-76)
1. Baffle thickness
(a) 12 inch tank: conic section, 1/16" Plexiglas; all others,

1/8" Plexiglas.
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(b) 30 inch tank: fixed ring, 1/4" Plexiglas.

2. Ratio of baffle width to tank radius
(a) 12 inch tank: see Figure 5-77.

(b) 30 inch tank: W/R = 0.076.

3. Perforation
(a) Hole size, 1/8" diameter.

(b) Percent perforation, 50%.

Container Excitation and Instrumentation

Two containers were used: a 12" diameter tank of 1/8" Plexiglas
and a 30" aluminum tank of 0.016" walls and 1/2" base. A paddle was used
to excite the liquid in the fundamental mode and then removed when the
amplitude was sufficient. Liquid response in the 12" tank was sensed by
strain gages mounted on the torsion bars which are located between the
base platform and the support ring, whereas the response in the 30" tank
was measured by a load cell which replaced one of the three platform supports,
The output signals from the strain gauges and the load cell were amplified
and then fed into a dampometer to measure the damping and frequency of

the liquid motion.

Damping Factor

The rate of decay of the moment resulting from the damped liquid
oscillations was measured and the damping factor §, representing the decay

of oscillation, was defined as
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where n is the number of cycles over which the decay was measured, Mo is
the magnitude of the initial moment and Mn is the magnitude of the moment

after n cycles.

General Comments

1. No graph is given for cruciform baffles since, for all but
shallow depths, damping is independent of the fluid depth.

Test results for the 90° and 45° positions (see Figure 5-77)

W _ _
are as follows: for 7= 0.169, 690 = 0,072 and 645 = 0.070
W _ _ _
and for R 0.337, 690 = 0,156 and 645 = 0.142.

2. All data points presented represent the average of five or
more measured values for the given condition. |

3. For high values of baffle depth, the curves in Figures 5-9,
5-10, 5-11, 5-66, 5-67, and 5-69 approach the damping values
for which no baffle is present.

4, 1In Figure 5-77, the mean daﬁping factor for a particular

baffle was obtained in the following manner: from the graph
the damping

relating/factor to baffle depth, the area under the curve

ds ds

— above and 0.084 —

R d R

ing was divided by 0.168 if"

between 0.084 below the maximum damp-

5. The curves in Figures5-12 and 5-14 are given by Miles'

equation as presented in reference 33. It is
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If W2 is neglected, then the damping factor becomes:

3 1
g C -_—
§ — 5.66ﬂe-4.6R a-z & W>2

R

which is identical to Miles' equation except that the

constant multiplier is 5.66 ™ instead of 2.83.

For high values of baffle depth, the curves in Figures 5-15,

5-16, 5-64, 5-65, and 5-68 approach, asymptotically, the first

resonant frequency for a circular cylindrical tank con-

taining no baffles.
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Figure 5.1 Details of baftle support arrangements and tank configuration. (32)
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TABLE 5.1

Liquid Resonant Frequency, (32)

W/R = 0.157
% Oren Area 0 8% 16% 23% 30% 23% 30% 30%
Hole Diameter 0 0.079 0.079 0.079 0.079 0.040 0.040 0.02
(in.)
R‘gg Depth wid/e (Xo/d = 0.00184)

s/R |

0 4,68 4,40 4,25 3.57 4,1 4.11 4,14 4,33
. 025 4.19 3.19 3,47 3.30 3.88 3.20 3.43 3.26
. 050 2.92 3.17 3.31 3.34 3.52 3. 36 3.34 3.22
. 075 3.01 2.90 3.27 3.32 3,47 3.26 3.34 3.32
. 100 3. 06 2.96 3.31 3.35 3.51 3.32 3.41 3.34
. 125 2.97 3.19 3.40 3. 36 3.49 3.31 3.43 3.35
. 175 3.18 3.24 3.35 3.32 3. 54 3.38 3. 47 3.41
. 250 3.40 3.36 3.40 3.45 3.56 3.52 3.54 3.42
. 375 3.48 3.49 3.54 3.58 3. 57 3.52 3. 56 3.54
. 450 3,47 3.54 3.62 3.58 3.58 3.59 3.62 3.54

W2d/s Xo/d= 000417)

0 4,43 3.84 3.76 3.73 3.65 3. 81 4.16 3 87
. 025 4,27 3, 64 3.79 3.62 3.62 3.60 3.54 3.90
. 050 3.71 3.29 3.40 3. 54 3.50 3. 44 3. 66 3.55
. 075 2.99 3. 14 3.28 3.32 3.46 3.26 3,45 3,31
. 100 2.94 3.15 3.28 3. 35 3.45 3.28 3.38 3.30
. 125 3. 09 3,20 3.22 3.35 3.45 3.26 3.40 3.31
. 175 3.09 3.24 3,26 3.38 3.51 3.26 3.45 . 3,34
. 250 3.18 3.34 3.38 3.43 3.49 3.39 3.45 3,40
. 375 3.33 3.46 3.40 3.43 3.42 3.52 3.45 3.44

wd/g Xo/d = 0.00833)

0 3.96 3. 84 3.73 3.54 3.52- 3.58 3.28 3.49
. 025 3.77 3.77 3.75 3.49 3.50 3.54  3.41 3.54
. 050 3.58 3.58 3.51 3.49 3.47 3.47 3.40 3.49

. 075 3.18 3.24 3.28 3..40 3.40 3.40° 3.4l 3.40
. 100 2.97 3.22 3.28 3,31 3.38 3.24 3. 34 3. 36
. 125 3. 00 3.06  3.32 3.24 3.31 3.28 3.30 3.28
. 175 3. 07 3.13 3.28 3.31 ° 3.31 3.28 3.30 3.32
. 250 3,16 3.28 3,28 3.31 3.28 3.22 3.32 3.32
. 375 3,30 3.32 3.31 3.24 3.30 3.36 3.32
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TABLE Se2

Ring Damping. (32)

W/R = 0.157
% Open Area 0 8% 16% 23% 30% 23% 30% 30%
Hole D)iameter 0 0.079  0.079 0.079 0.079 0.040 0.040 0.020
{in, .
Ring Depth
dgg R P Damping Ratio,  Xo/d= 0. 00184
0 . 060 . 087 . 084 .108 . 087 . 091 .110 .103
. 025 .210 .132 . 084 . 106 . 087 .114 .112 .116
. 050 L1370 147 .071 .073 . 055 . 086 . 086 .103
. 075 . 090 .1145 .070 . 065 . 050 .072 . 082 . 084
. 100 . 070 ,0885 .069 . 059 . 045 . 046 . 050 . 057
. 125 .073 . 067 . 056 . 049 . 045 . 059 .045 ..053
.175 . 060 . 054 . 056 . 045 . 040 . 054 . 033 . 049
.250 .035 . 040 . 035 . 047 . 031 .032 . 032 . 042
.375 . 027 . 025 . 026 . 021 . 022 . 023 . 022 . 029
.450 . 025 . 022 . 017 .023 ., 015 . 023
Damping Ratio;  Xo/d = 0,00417
0 .101 127 .101 . 098 . 082 .094 102 . 086
. 025 .121 . 126 .122 .108 . 093 .110 .114 . 109
. 050 .173 . 134 .119 .112  .089 . 109 . 106 .103
.075 . 160 L112 .108 . 084 . 077 . 104 . 077 . 089
. 100 .110 .091° .090 . 075 .064 - 085 . 068 , 085
. 125 . 077 .102 1,077 . 064 . 047 . 077 . 064 .078
. 175 .072:  .070 . 072 . 061 . 050 . 066 . 054 . 070
.250 . 051 . 061 . 051 . 049 . 047 .051  .049 . 055
.375 . 039 . 044 .038 .035 . 040 . 039 .032 . 037
Damping Ratio,  X,/d = 0,00833
0 L117 L1220 121 L111 - . 095 .110 . 091 .114
. 025 . 146 .126 . 124 .117 .. 087 .122 . 106 L112
.050 .177 .134 . 124 . 109 . 098 .126 . 098 .118
. 075 . 158 .123 .114 . 099 . 084 . 104 . 086 . 120
.100 . 142 .115 .102 . 093 . 082 .093 .072 . 093
.125 .116 . 106 .093 . 088 .078 .093 .082 ..088
.175 . 096 . 096 . 081 .078 .072 . 079 .074 . 072
.250 . 082 . 066 . 067 . 061 . 057 . 067 . 058 . 058

. 375 .066  ,048  .046 .026  .046  .038 . 042
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Figure 5.4 Effects of double rings as a function of baffle depth. (32)
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5.1.3.2 Ring Baffles: Analytical. Damping requirements are

determined from stability studies of the vehicle in question. The designer
must then determine the baffle width and spacing needed to yield a damping

factor in the required range.

5.1.3.2.1 Miles!' Analysis (28). According to Miles, the damp-

ing ratio of an annular ring baffle is

_ 4.6d
Y = 2.83 o3/2 e 2 (ci/a)llz, a<<l and g, <<a (5-1)
where
Gﬂaz = ring baffle area
@ = ratio of ring baffle area to cross-sectional area of tank

d = depth of ring baffle below undisturbed free liquid surface
a = radius of circular cylindrical tank
Cl = amplitude of liquid oscillations measured at the tank wall

from undisturbed free liquid surface.

Within the restrictions on @ and Cl, this damping ratio relation was exper-
imentally verified; however, Miles suggested that additional experimental
confirmation would be desirable, both in order to establish the limits on

a and clla and to determine a more accurate value of the constaﬁt multiplier.
Results are shown in Figures 5-17 to 5-29. A nomograph is shown on page 5-32.
A line drawn between values of Cl/a and d/a determines a pivot point on the
K-axis. A line drawn from this pivot point through a value of Y gives the

‘corresponding value of W/a.
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DAMPING FACTOR VERSUS BAFFLE DEPTH FOR
LIQUID AMPLITUDE gw-o.om WITH THE BAFFLE

WIDTH AS A PARAMETER (MILES FORMULA)
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DAMPING FACTOR VERSUS BAFFLE DEPTH FOR
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DAMPING FACTOR VERSUS BAFFLE DEPTH FOR
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DAMPING FACTOR VERSUS BAFFLE DEPTH FOR WIDTH
W=0.025 WITH LIQUID AMPLITUDE AS A PARAMETER
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DAMPING FACTOR VERSUS BAFFLE DEPTH FOR WIDTH
W=0.050 WITH LIQUID AMPLITUDE AS A PARAMETER
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DAMPING FACTOR VERSUS BAFFLE DEPTH FOR WIDTH
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DAMPING FACTOR VERSUS BAFFLE DEPTH FOR WIDTH
W=0.20a WITH LIQUID AMPLITUDE AS A PARAMETER
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DAMPING FACTOR VERSUS SURFACE AMPLITUDE FOR BAFFLE

WIDTH W= 05a WITH BAFFLE LOCATION AS A PARAMETER
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DAMPING FACTOR VERSUS SURFACE AMPLITUDE FOR BAFFLE

WIDTH W=.15a WITH BAFFLE LOCATION AS A PARAMETER

1
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Figure 5-27
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5.1.3.2.2 O'Neill's Extension (84). Within the scatter

of experimental data, O'Neill showed that either of the following equations

L
can be used for reasonable values of a—l and F = —F;g, for any ring submergence
pga
-:—_>_ o and for ring widths corresponding to a < 0.25
-4.60d/a 372 [F1)*
Y=2.83e a . (Miles)
‘ %
Y= 2,16 & 400/ 32 [ E (5-2)
pga

Equation (5-2) gives the damping factor in terms of the lateral liquid force F

which 1s easier to measure than the wave amplitude &1°
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5.1.3.2.3 Bauer's Extension (31). During sloshing, the

baffles and the oscillating fluid are not in continuous contact with each
other. There are parts of the oscillation cycle during which the fluid does
not uniformly wet the entire surface of the baffles. For this reason, Miles
(28) expression, Equationr( 5-1), gives a higher damping effect thén that
experimentally observed. To account for the deviation, an effective baffle
area concept was herewith successfully employed. This effective baffle area
is a function of the width w of the baffle, its location d below thé liquid
free surface, and the maximum amplitude of sloshing Cl' The theoretical

formula obtained agrees with experimental results.

In Equation (5-1), the baffle area ratio blocking the

cross sectional area is defined as

G=E[2-y—]
a a

if the baffle is completely submerged during a slosh cycle. If the baffle
is completely out of the liquid during a certain time of the slosh cycle,
the effective baffle area is

oy /et (g/a)’-(d/a)?
g, /a d/a

et
Il
18
~~
N
[
(£
'
[Ny
~~
=
'
o
~
)
p—a
+
2N
o
~
Y
—
=]

— o — o — — o —— — — —— — ——— —— — — . — b— — — — —
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5.1.3.2.3 Bauer's Extension (31) (continued)

gy/a t J(Cl/a)z - (l—dﬁl—-—)2

d w
2 Py (1 - ;) L - w/a
T Cl/a d/a
' 1 - w/a
da -5 2
+1 _a a ( )2 (d/a)
2 ty/al)” - 2
T (g /a) (1 - w/a)

-1 (1 - _;1)2 arc sin ("——d‘@—) +';- 1 - g) d/a_ (5-3)

w
(1 - ;)Cl/a

51
;— , then the value

If the baffle is completely submerged, i.e., >

m o

of a is equal to the underlined term (Equation 5-3). For the case of the
baffle being out of the liquid during the slosh cycle in such a fashion
that the inner rim of the ring baffle is not out of the fluid at any time,

i.e.,

g

Cl
< —
- a

J
~~
—

[

g
p—
iAa

m o,

the underlined dotted terms are added to obtain the effective baffle ar :.

For the case in which part of the baffle gets out of the liquid, i.e.,

21

& —
a

o e

w
Q - ;)

the total formula applies. Thus, Miles Equation for a single flat ring

baffle becomes
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5.1.3.2.3 Bauer's Extension (31). (continued)

4.6d
y = 2.83 (&)3/2 e” 4

L

(51/3)2 (5-4)

For a system of ring baffles, the damping factor can be obtained by super-
imposing the contribution of each baffle. The nth baffle at a location

d + (n-1)D below the free fluid surface exhibits an effective baffle area of

=+ (n-1) =
s _¥ wy _ 1
cLn_a(z- )-2{- Cl/a
TSI T
|5+ (1) 2 22 - d e d?
+(?) / 'ln a a a a
a
‘1 4 a1) 2

- o - — o — s . e —— e o= = o—

—— v —— — - ——— = ——— - ———
—— e o —— " — ——— —

—— e ——— — —— . —— —— — —— - —— - o — — — o —

. 1_g+(n-1)g
(1 -3¢ /a
[d+@n2]a-5

gy /a
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5.1.3.2.3 Bauer's Extension (31) (continued)

( 7 )

d
El+ (_;_1)2_[&1+(n-1) D
a a

Se

1 - w
1n Z
d . (n-l)'[l
a a
w
N 1 -3 /
2
a ]
) l:g + (n-1) g:l (1 -%) g, 2 |:a + (n-1) a
a a a 1 +
Mk 2 e (1 - %2
(Cl/a) a
D
1 g, (n-1) =
w2 a a
-;(1-;) arc sin =
. L |E e 2
+5 a - ;) Cl/a
If
4
d D 1
a + (n-1) 2 -a
then
o =a=2(2-7)
n a a

If

then the underlined formula is added, while for the case
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5.1.3.2.3 Bauer's Extension (31) (continued)

g w

d 4 (n-1) g <—a-9

a
the complete formula applies.

For a baffle located above the undisturbed liquid surface,
the same formula can be applied approximately with a slight modification.

If the baffle is completely out of the liquid, i.e.,

ala
iy

Y
-
o |e-

<

*|

*
where d = (D - d) is the distance of the baffle above the undisturbed
liquid surface, the baffle area subjected to the fluid is @ = 0. The

value D is the distance between baffles. For

i.e., only a part of the baffle is subjected to the liquid during a slosh

cycle, then the effective baffle area contributing to the damping is

% -
a = a = a For the mth baffle, this is
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5.1.3.2.3

Bauer's Extension (31) (continued)

D d) D d
D _d m2.d
L - O A O - H
51 a (1-3) ¢ /a
2 D d
-6
D d w a a w2
+g(m;'2> (-¥) . -2
n
T Cl/a (mg_ij.
a a
(1-3%)
a
D d w D d— 2
1[“‘2'2}(1'2) ( )2 [’“Z'Z} .
T 2 tyfa) - w
c,/a) -9
D d [
m-— - = m— -
+%(1——) arc sin (a a) '%(1‘2) a/
(l-z)cl/a a /e
a
(5-7)
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5.1.3.2.3 Bauer's Extension (31) (continued)

If the value

ol )
[V [N
Y
s

>

®|

then 5; = 0, while for the case where a partial part of the baffle is
only subjected to the liquid during one slosh cycle, the effective area
contributing to damping is presented by the underlined part of the

formula. This means that this part is used for

[

1

a

L
a

(1 -

® |2

) <

[V L}
=R

<

Y

Loy
a a

b

oo
YT=W

<

the total formula is applied for the effective area. Thus the total damping
of n baffles of width w submerged into the undisturbed liquid and m baffles
of the same width outside of the undisturbed fluid, all of which are apart

from each other by the value D, is given by

Rl PN [ﬂ + (n - 1) 9] - 3/2 " -4.6<m9— - 9)_;/2
Y =2.83/ = E: e 2 al . + E:e @ %

n m
=1 m=1

(5-8)

The result of this investigation can be seen in Figures 5-31 to 5-63.
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Figure 5-36
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5.1.3.3 Ring with Radial Clearance

-—CL-—‘

Iy
= =

where h = depth of liquid
d = depth of baffle
a = radius of right circular cylinder
w = ring width
¢ = radial clearance

References: (35)

‘ Investigations by Silveira, Stephes and Leonard (35) show that
l for a given baffle depth:

1. With the radial clearance constant:
(a) The damping factor increases as the baffle width increases (Figure
5-11)
(b) The frequency increases as the baffle width decreases (Figure 5-16).

2. With the baffle width constant:
(a) The damping factor decreases as the radial clearance increases
(Figure 5-11)
(b) The frequency increases as the radial clearance decreases
(Figure 5-16).
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5.1.3.4 Conic Section

h
— g —o
where h = depth of liquid
d = depth of conic section below undisturbed free-
surface
a = radius of right circular cylinder
w = conic section width

References: (35, 42, 43, and 83)

Investigations by Silveira, Stephens and Leonard (35) show that:

1. For a given baffle depth:
(a) The damping factor of a perforated and nonperforated conic section
increases as the baffle width increases (Figure 5-68).
(b) The frequency for a perforated and nonperforated conic section
increases as the baffle width decreases (Figure 5-64 and 5-67).

2. Although the damping provided by the conic sections is slightly higher
than that for the ring baffles, the surface area of a conic section
having the same baffle width as that of the ring baffle is considerably
higher.

Investigations by Liu (83) give a conformal mapping solution
for the pressure distribution on the conic section (article 5.1.7.3).
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5.1.3.5 Inverted Conic Section

N I
N ~ f
—— e — N ‘
d
s
h '
W
e &
where h = depth of liquid
a = radius of circular cylindrical tank
dS = depth of baffle
w = 1inverted conic section width
References: (35, 42, and 83)
of Investigations by Silveira, Stephens and Leonard (35) show the

effect/baffle width on both the frequency and the damping factor as a func-
tion of baffle depth (Figures 5.68 and 5.69).

Investigations by Liu (83) give a conformal mapping solution
for the pressure distribution on the baffle.
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Variastion of frequency with baffle location for inverted-
conic-section baffle. (35)

Figure 5-68
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5.1.4 Cruciform Baffle

W oa—]  f—
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| 1N | h
I 18l |
\ U| |
- — 1
- h t>
w
las—— 3 —a]
where h = depth of liquid
a = radius of right circular cylinder
w = cruciform width

References: (35)

Cruciform baffles are most effective against rotary slosh which
has large horizontal components of £luid velocity near the tank wall. Cruci-
form baffles are also slightly effective against lateral slosh since large
horizontal fluid velocities exist where the node line of the first slosh mode
intersects the tank walls.,

Investigations by Silveira, Stephens and Leonard (35) indicate,

as would be expected, that damping is independent of fluid depth except for
shallow fluid depths.
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5.1.5.1 Mat

ZZ g ;;?;55‘-
¢ /%%——— Liquid Surface

References: (40, 42, 43)

Investigations by Eulitz (40) have been made using commercial
coco-fiber mats cut into a shape corresponding to the cross-sectional area
of the tank. Several layers were used to attain the required thickness and
hollow, airtight aluminum spheres were inserted between the layers to pro-
vide the necessary buoyancy. The device was highly effective in damping the
liquid amplitude; however, because of the following, it is impractical for
missile application. The inner walls of a propellant tank are usually
obstructed by stiffener rings, pipelines and other equipment. Therefore,
if a floating device 1s to be used, it must be capable of adapting to the
changing cross-sectional area of the container.

5-98



5.1.5.2 Can

Cans (simplified)

Liquid Surface

References: (40, 42, 43)

Investigations by Eulitz (40) have been made using cans made
of perforated sheet metal and enclosing a hollow air-tight metal ball of
slightly smaller diameter, which provides the necessary buoyancy. The
optimum dimensions of a can necessary for adequate buoyancy and thereby the
total number of cans is determined in the following manner. The fraction
of submerged volume of the enclosed ball A is given by

A =@%M[3+(3+n) p)

where 8 = the thickness of the can wall
vy = the specific gravity of the can material
n = the number of cans along a tank diameter
D = the tank diameter
P "= the percent perforation

For a particular set of values &, vy and P, a graph of A vs. D can be plotted
consisting of a family of curves corresponding to various values of n (for
example, see Figure 5-73). The curve passing nearest to the intersection of
the desired mean values of X = 0.5 and the tank diameter D under considera-
tion will give the optimum value of n. The total number of cans is then
determined by

N = %(3n2+1)
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5.1.5.2 Can (continued)

and the can diameter is given by
= D
d1 T n
The cans are made of perforated aluminum sheet enclosing a
hollow air-tight aluminum ball, of slightly smaller diameter, which provides

the necessary buoyancy (Figures 5-70 and 5-71). The size and number of cans

used in the tests are indicated by n = 7 or N = 37 (see Figure 5-72).

The containers are rigid-wall circular cylindrical tanks of

diameter 17.5 and 25 inches, respectively.

The optimum dimensions of the can necessary for adequate
buoyancy, and thereby the total number of cans, is determined as follows:
the desired value of A the fraction of submerged volume of the aluminum
ball, is 0.5. Figure 5-73 gives an equation for A as a function of the
thickness of the can wall S, the specific gravity of the can material Y,
the percent perforation P, the tank diameter D and the number of cans along
a tank diameter n. The curves shown in Figure 5-73 enable the designer to
determine the values for n and N corresponding to A * 0.5 as a function of
D for a set of values of 8§, Y and P. Note that the notation used in

Figures 5-71, 5-72, and 5473 is applicable only to these figures.
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Figure 5-70 Mat type device and single can. (40)
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ol = 30°

alo

]

D = TANK DIAMETER
d,=DIAMETER OF THE CYLINDRICAL BODY

da=DIAMETER OF THE CONE OPENING d
d,*DIAMETER OF THE ALUMINUM BALL® -}F
@ =SLANT HEIGHT OF THE CONE
J s WALL THICKNESS OF THE CAN
§ * SPECIFIC GRAVITY OF THE CAN
MATERIAL '
‘O =SURFACE OF THE CAN
V =VOLUME OF THE CAN MATERIAL =0 §
W = WEIGHT OF THE CAN MATERIAL=O«f + ¥
Ocoug s -i-dFTr (eq.5)
Ocv. =« 1d21rn  (eq.4)
n = NOMBER OF BODIES UPON D
o.wy'oc“_'fzocong ad e +n)p

2 [00-
p %ﬁ (eq.6)
P s PERFORATION IN %

OSP“ERE s %d'z m ‘eq.-,)
Ocan * Owooy + Osprere

2
= Ly Baaemp] eqo

' Weaw 1 35T B+a+npglsy (eas

Typical dimensions of cans. (40)

Figure 5-71
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N =
upon the surface.

Liquid Surface

Figure 5-72 Distribution of cans within a tank. (40)
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5.1.6.1 Cross Partitions

\J

17/
e

\

N
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/

References: (4, 58)

Investigations by Bauer (4) indicate that cross partitions have
a greater effect on the eigen frequencies than do concentric partitions. For
the quarter-sectored tank, the oscillating propellant takes on various modes
of vibration. Also, in the case of a quarter-sectored tank, the vibrating
liquid mass is reduced to more than one-half of that of a c¢ircular cylindri-
cal tank.

Investigations by Garza (58) indicate the effect of hole size
on the frequency as a function of percent perforation (Figure 5-78 and 5-79)
and the effect of both percent perforation and frequency on the damping ratio
as a function of the excitation amplitude (Figure 5-80 and 5-81).
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5.1.6.2 Concentric Partitions
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References: (4, 52)
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5.1.7 Pressure Distribution. The designer of a baffle system is

interested in finding the pressure history of the fluid acting on the baffles
because after the spacing and width of the baffles have been optimized,
integration of the pressure will give the moments to be expected during
flight. Thus, with the forces and moments acting on the baffle determined,
the baffle material and its thickness can be chosen to withstand the load
exerted on the baffles by the oscillating fluid, insuring, also, that the

system pays a minimum weight penalty from the addition of the baffles.

5.1.7.1 Procedure I (28). The force per unit area on the ring

is given by

p(8,t) = CD . -‘%Qw2

p
= CD - wzfz(-d) cosze sinz(wt) (5-9)

N

where w is the vertical component of the fluid velocity, £f(z) = sinh k(z+h),
sinh(kh) and CD is the local drag coefficient. Its value may be obtained

from the empirical relation

UmT UmT

b= N T 2= 2%

and
UmT
= —_—
C 2, D > 100
UurT

where g is the "period-parameter'; Um denotes the timewise maximum

velocity, T the period, D the plate width, and

—_—

UT [ug £(-ddcoss] (21/w)  21E(-d) (cl)
L = cos 6

D aa o
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Substituting w? = kg tanh (kh) into Eq. (5-9) and expressing the maximum

pressure on the baffle as an equivalent head of the liquid, we have

2
P c
_ _max _ 1 2, 1
Z ax = e 5 k a tanh (kh) £°(-d) (CD)max (7;> (5-10)

5.1.7.2 Procedure II (18). Analytical research has

shown that the motion of the free surface of tanked liquid propellants is
normal to the undisturbed liquid free surface. Thus, the maximum pressure

and moments exerted by the liquid on the baffles occur when the mean free

surface 1is at baffle level. That is, when the baffle depth, with respect to

the free surface, is zero (d = o).

The dynamic pressure of the fluid acting at any point on a baffle

in a cylindrical tank can be expressed as

r eld
_ 2kg§1 p cos B Jl(El ;) - —';—
p= e (5-11)

2
144 (e1 - 1) Jl(el)

where

p = dynamic pressure, psi

kg longitudinal acceleration, ft/sec2
P = mass density of the liquid, #m/ft3
a = radius of the cylinder, ft

¢, = angle corresponding to sloshing amplitude

a ¢,, maximum amplitude of sloshing, ft

L
[
1

@
il

angular coordinate
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5.1.7.2 Procedure II (18) (continued).

It can be seen from Equation (5-11)that the maximum positive pressure and
maximum negative pressure will occur at ® = o, r=a and 6 = 180°, r=a,

respectively. The analytical expression for the moments acting on the baffle

is obtained from the dynamic pressure. It has the following form:

€
21ra4 cosh (:?)(h-dj‘ a

© /4
< 4 4.2 57°X(S) o
M (s) =| 7 pa"-a )s” X(5) - ] - K(=Z,¢ )
B b o o1 \ 52402 | €2(e201 )eosh (2% J a’n
n n n a
(5-12)
where enao ' enao
a a J, (—=) a J )
o _ _o 1° a _0,2 1° a _
K( s € ) - 1 - (a ) Jl(en) + (a ) (sn) ( JI (en = constant

S = Laplace transformation operation

a_ = Inner radius of annular baffle, ft

For a circular cylindrical tank of arbitrary size it is convenient to express
Equation (5-12) as a ratio of the baffle moment to the product of longitudinal

acceleration kg and sloshing amplitude Cl' That is,

€ d
1
M| "
B1 ge a ao
——— = | Kep) (5-13)
pa kl;ll 1
where

IMB ] = absolute value of the moment on the baffle corresponding to

1

the first oscillation mode (n = 1)

5-109



5.1.7.2 Procedure II (18) (continued)

Graphical representation of Equation (5-13) can be found in Figure

(5- 74). It shows the baffle moment as a function of baffle width. The

curves in this figure are valid only for fluid depth greater than one radius
of the tank measured from the bottom. That is, g— > 1. For % < 1, the
following correction factor 1s recommended:
eld
CF = eld eld eld
cosh — + sinh — tanh ——
a a a

fhen, the corrected moment expression becomes

Ml’31 = CF {MBI [Equation (5-13)]} (5-14)
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5.1.7.3 Procedure III (83). Conformal mapping is used

to transform the geometrically complex representation of the baffle and the
tank wall into a simple plane for which a solution to the Bernoulli equation
for incompressible, nonviscous, unsteady flow is readily obtainable. Since
this equation gives the velocity and pressure distribution on the baffle

in the transformed plane it is then a simple matter to take the inverse trans-

formation to find the solution in the original plane.

The transformation is obtained by using the Christoffel-

Schwarz expression defined as

W al-l a2-1 a -1
z = A f (w-ul) (w-uz) - (w-uk) k dw + B (5-15)
O

whers
z = F(w) =x + iy
w=u+ iv
x,y = Cartesian coordinates in z-plane
u,v = Cartesian coordinates in w-plane

A = Constant which determines the scale factor and rotation of
the polygon

B = Constant which determines the origin of the w-plane

ma, = Interior angles of the polygon formed by the tank wall =znd
the baffles in the z-plane

= Vertices of the polygon on the u-axis

The pressure distribution applicable to all three cases

herewith given is as follows:
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5.1.7.3 Procedure III (83) (continued)

2
p(u,v) = p{IUIw [ReF(w) - Au] - |ul? (% - 2ARf +%{B')} (5-16)

where w is the circular frequency, ¢ the density of the fluid, U the
velocity of the fluid acting on the baffle and £, K, and R are parameters
depending on the geometry of the system.
Baffle Type I. The baffle-tank wall system in the z-plane is map-

ped onto the w-plane by the transformation

W
z =A f (w‘*-c).l/2 (w-uz)-l/n (w-\.13)(w-u4)1/r1 (w-c‘).l/2 dw + B (5-17)
o

The result is shown in the figure for Baffle Type I below.

z-playne weplane
3
(0]
l Q =n/n
4
u AU
—— —
5 X -Cc, R 0 . 5 u
tank wail 77277 777277777 1 > 3 " .

Baffle Type I
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5.1.7.3 Procedure IIT (83) (continued)

The parameters and constants for the pressure distribution

given in Equation (5-16)are as follows:

_ 1/n
. _ /& u-u,

K(u,0) = ) -

2(c“-u") u-u,

1/n
u-u

R(u,0) = 2 5 |

2A(u-u3) 4
f(u,0) = B8 sin(63/n)
g(u,0) = - B cos(93/n)
A= b/I2 B = b1 + ibz

o for ~c ¢cu<uy,, U, <uU < ¢
6,(u,0) = - =2 4 = -
3 m for u uc<u
2 SU 1Yy
B(u,0) = ¥ 2(c’-u?) (u-u,)
Y3
1= f IF1 (w) law
o
Y3
I, = j (wte) /2 Gw-uz)-l/n (1.13-w)(u.-w‘)1/n (c-w) M2 a4
u
2

b, = -b(1+Io/12) sin a;b, = b(1+I°/12) cos a+t a
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The constants Uys Uy, U, can be determined from the

irtegral expression for 12 above and from the following definite integrals:

2 - -1/2

L= o™ ey VR () (am) P (e T2

-c

4 1/2 1/ 1/n -1/2
I, = o) M2 (reu )T weu) ) T (e dw

°3 (5-18)
' u

> - - 1 -1/2
S e N e R e e

u

4

where Il’ 12, 13, and I4 are definite integrals which are proportional to
the length of the sides of the polygon ABCDE corresponding to polygon

12345 in the transformation for Baffle Type I. Thus,

BC 2_b CD 3 b
e e —=-1=%
AB AB 1 AB

The unknown constants u2, Uy, u4 can be determined by finite difference

techniques by using the simultaneous equations

Ik(uz, ug, u4) = Akll(u2’03’u4) s k=2,3,4 (5-19)

* % *
For example: let Uys uy and u, be the solution of the above equation and

(o) (o)
u

2 73
* % *
exact solution Uy, Ug and Uy» We expand equation (5-19) in a Taylor's

(1) _ * (o)
kY T Y%

first order terms, thus obtaining the first approximation

and u as the initial values differing little from the

take u 20)

series in powers of the differences @ and terminate at the
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5.1.7.3 Procedure III (83) (continued)

(o) (1) (o) _ (o) (1), (o) } _

1,.° + a, "I = I, + @ "1 k=2,3,4 (5.20)
« 322,3,4 3oy k[l =2,3,4 1 DYy

where

m _ [
Ik u, du
73 j (m)

The partial derivatives which have limits not depending on Uy, Uy and u,
may be obtained by direct differentiation, i.e., performing the partial

differentiation, then integrating. Those that have u2, u, and u, as

limits are computed numerically by using

TR BN PR
(1)

where Au is a small increment. Solving for aj simultaneously from

equation (5-20) and using the second approximation,

LD 2 u(.o) + oD

3 j g0 T
in equation (5-20),we obtain
(1) , (2) ;) Dy g ol 1D e 3,4,
i j£2,3,4 E R N

The above process is carried out until uém)'s converge.
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5.1.7.3 Procedure III (83) (continued)

Special Case: Baffle Type TA. This is a special case

of Baffle Type I for which a = 0, u, = -c¢, and u, = ¢. The transformation

becomes
" . (n12) (n-2)
_ 2n - 2n
z =A j (ctw) (w-u3)(w-c) dw + B (5-22)

o

The results are shown in the figure for Special Case la = below.

LI AU,
-C o 9? 0 i,u
tank wall 1 3 5

Special Case Ia

For this case, the parameters and constants needed to obtain

the pressure distribution (Equation 5-16) are the following:

{nt1) _ (n-1)
K(u,0) = fg A(ctu) ™ (c-u)
/2 1/n .
R(u,0) = 2A [%%E} (u-u3) 2
£(u,0) = - J2(c®u?) (u-uy)sin o (5-23)

glu,0) = = Y2(c“-u )(u-u3)cos o
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5.1.7.3 Procedure IIT (83) (continued)

A =1/,
B = b1 + ib2
u
ReF{u,0) = Asina J (c + u)-(n+2)/2n (u - u3) (c - u)-(n-2)/2n du + b,
o
u
ImF(v,0) = - Acosa j (c + u)-(n+2)/2n (u - u3) (c - u)-(n-Z)/Zn du + b

o 2

The pressure distribution for Case IA is shown in figure (5-75).

Special Case: Baffle Type IB. This is a special case of Baffle

Type I for whicha= o, u, = =c, uy = o0, uy, =c, and % = 0. The transformation

becomes

~—— | (5-24)
° w -C

The results are shown in the figure for special Case IB below.

y
3
v b AU
I15 X -c o ¢ u
tank wall 77777 - -4 C

Special Case Ib
The pressure distribution is well known. It is parabolic in shape v.ch the

maximum disturbance pressure occurring at the base of the baffle and the

minimum (zero) at the tip of the baffle.
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5.1.7.3 Procedure III (83) (continued)

Baffle Type II. The baffle-tank system (n1 =n, =n,

u, = o) in the z-plane is mapped onto the w-plane by the transformation

(n1f2) ) .l'... 1_ i (n2-2')
z = A fw (ctw) 2ny (w-u2) 01 P2 (w-¢) My g4y +B (5-25)
(o]

The results of this transformation is shown in the figure below.

z-plane

w-plane
2
dl = K/f\l
u Qz = n/ng AU
—p ——
1 3 x -c ugz o c u
tank wall 1 2 5

Baffle Type II

The parameters and constants given in Equation (5-16) can be obtained as

follows:

dz

EZ - AK' (sin a, * icos al) = K(f + ig)

dw 1

dw . L - ) = R(f - (5-26)
i~ AiF (sin a, - icos al) R(f - ig) 2

- ¢ < u <
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5.1.7.3 Procedure IITI (83) (continued)

dz

= AK (sin a, - icos az) = K(f + ig)
dW___]._ 3 =

iz -~ AR (sin a, + icos a2) R(f - ig)
-u, Suc<ec

-(n2-2) 1-1— 1 ) (n2-2)
Kt = (chu) 2™2 lu-u,| "L T2 (e-w) 2n,
u
b B 2
A= I.cosa I1 B K'du
1 1 -C
sin a, I c
b, = b(tan a, - 2 =) 1 = K'du
1 2 cos a. I ’ c
171 o]
B cos u2 I
b, = cos a, I
171

cos a;
1

cos az 1 c 2
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5.1.7.3 Procedure III (83) (continued)

Special Case: Baffle Type ITA. Same as Baffle Type II

but & = ﬁl = 02. The transformation becomes
w (n-2) (n-2)
2 2. 2n n
z = A [ [ﬂw -c (w) ] dw + ib (5-29)
o

The results are shown in the figure below

AU
—
P -C o c
7T 1 2 3

Baffle Type Ila

Baffle Type III. The transformation from the z-plane

to the w~plane is given by

w (wz-ug) dw

z=Af

(5-30)
o J(wz_cz)(wz_u§;
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5.1.7.3 Procedure III (83)(continued)

and the results shown in the figure below.

y
l
2
|
" bldjdlb L
27 2
el
113, 416 -Cc -Up -u3 O ug ¢ u
TR 7974 T e S
BAFFLE TYPE III
The parameters and constants given in Equation (5-16)are as follows:
da (u?-ud)
=4 - - +
du (o 1) K{; ig)
J*; 2y (w? -uj )
(5-31)
w1 Jic -u )(uz— 2)
(u -u2)
for u; < [u]< ¢
i (u?-ud)
= =A (1 + io) = K(f + ig)
dw 1
4 2 2,,2 2
(c“-u )(u3-u )
Q(cz_uz)(uz_uz) (5-32)
w1 2 (1 - i0) = R(f - ig)
dz A 2 2 g
u”-u,

for Iul < ug
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5.1.7.3 Procedure III (83) (continued)

The constants Uy, Uz, and A are determined simultaneously

from the equations

K1/K2 = d/2b, Ky = Kg» A= d/2K1, B=o0

IUB (ug-uz) du

1 ' \
I [CERCYRC
) (u%-uz)du
2 " 2 2.} (5-33)

bk {icz-uz)(UB-u

Ky= |

uy l(cz-uz)(uz-u

c (uz-ug)du

2.\
3)

Special Case: Baffle Type ITTA. The results are ident-

ical with Special Case Baffle Type IB but with Uy = u, = 0.
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Figure 5-75
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5.1.8 Conclusions and Recommendations

In choosing a damping system, the designer should start with
solid ring baffles and use Miles' expression, Equation (5-1), for his
first approximation of the damping factor. The reason is that Miles!'
equation is simple in format and in nature and a rather rapid "ball-park
figure" for the spacing and width of the baffles can be obtained. Bauer's
extension (article 5.1.3.2.3) would then give more accurate results and
optimum conditions. The pressure acting on the baffle (Equations 5-10, 5-11,
and 5-16) will permit the optimization of the thickness and material of each

baffle and thus the calculation of the total weight added by the damping

system.
Results

1. The maximum frequency occurs when the baffle is located at the
undisturbed free liquid surface, i.e., ;E = 0 (Figures 5-2 and 5-3).
Note: The curves in Figures 5-2 and 5-3, for high values of

gi, approach asymptotically, the first resonant frequency for a
circular cylindrical tank containing no baffles.

2. Agreement between experimental values of the damping factor and
those obtained from Miles' equation is good except in the range of
0 < gﬁ < 0.125 (Figure 5-5).

3. With the hole size constant and for a given baffle depth:

(a) The frequency increases for increasing percent perforation

(Figure 5-2).
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Results (continued)

(b) The damping factor increases for decreasing hole size
(Figure 5-8).

With the percent perforation constant and for a given baffle depth:

(a) The frequency increases for increasing hole size

(Figure 5-3).

- (b) The damping factor increases for decreasing hole size

(Figure 5-7).
The frequency of a solid fixed ring baffle is higher than that of
a perforated baffle for gi € 0.05 and lower for ;5 £ 0.05
(Figures 5-2 and 5-3).
Damping produced by perforating baffles 1s consistently lower
than that produced by a solid baffle (Figure 5-7 and 5;8).

The damping factor increases as the excitation amplitude increases

(Figure 5-6).

- For a given baffle depth:

(a) The damping factor of a fixed ring, conic section and per-
forated conic section increases as the baffle width increases
(Figures 5-10, 5-67, and 5-68).

(b) With the radial clearance constant, the damping factor of a
ring-with-radial-clearance increases as its baffle width
increases (Figure 5-11).

(¢) With the baffle width constant, the damping factor of a ring-
with-radial-clearance decreases as the radial clearance

increases (Figure 5-11).
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10.

11.

12.

13.

14.

15.

The damping factor is independent of kinematic viscosity and
increases as the excitation amplitude increases (Figures 5-13 and
5-14).

Agreement between experimental values of the damping factor and

those obtained in Miles' equation is good except for

0 < Z—sf_ (0.8 - 1.2), (Figures 5-12 and 5-14).

For a given baffle depth:

(a) The frequency for a fixed ring, conic section, and perforated
conic section increases as the baffle width decreases
(Figures 5-15, 5-64, and 5-66).

(b) With the radial clearance constant, the frequency increases
as the baffle width decreases (Figure 5-16).

(¢) With the baffle width constant, the frequency increases as
the radial clearance decreases (Figure 5-16).

During propellant loading, the cans erected smoothly and arranged

themselves in the required configuration even though they were

randomly placed in the tank bottom before starting the filling
operation. For this reason, they operated as good anti-vortex
devices.

The devices floated perfectly and yielded high damping effects.

Draining the liquid while the tank was oscillating did not change

the damping effect.

An inherent disadvantage of cans is that they are free to move when

the contginer is empty, i.e., they are loose bodies during the

transportation of the missile and can thereby cause damage to the

dnoer tank structure.
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16.

17.

The dashed parts of the curves in Figures 5-9, 5-10, and 5-67
indicate that, because of the turbulent nature of the liquid in the
regions of higher damping, an uncertainty existed in defining the
exact location of maximum damping.

A divided baffle which extended down to the ring baffle was used
for most of the tests in Reference (35). This tended to increase

the value of the damping as seen in Figure 5-14.

Conclusions

1.

4.

Fixed ring baffles can be perforated with holes of relatively small
diameter, théreby reducing the baffle area by as much as 23% with
no appreciable loss in damping effectiveness. Such reduction in
baffle area may be effectively used for additional baffles thus
increasing the minimum damping ratio value with no appreciable
increase in baffle weight.

For an excitation amplitude ;2 = 0.00417, the baffle above the
liquid surface adds to damping only when the distance gi < 0.125
and the baffle below the surface contributes to damping only when
0 < gﬁ-j 0.375. The baffle spacing for some minimum Ys can be
determined by adding the depth of the submerged baffle to the depth
of gﬂ = 0.125 for which the upper baffle is still effective.

Fixed ring baffles can efficiently introduce liquid damping into
propellant tanks.

Fixed ring baffles are not very efficient for shifting the liquid

resonant frequency.
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Conclusions (continued)

5. Based on the total surface area of a baffle, the highest mean
damping factor of the baffles tested appears to be afforded by the

fixed ring baffle (Figure 5-78).

Summarizing, the following remarks are pertinent.

1. Bauer's extension to Miles' equation can be used without
further experimental verification except for a check of the final product.

2. Ring baffles provide little frequency effect.

3. Solid ring baffles with small diameter perforations (about 20%
open area) can effectively be used to reduce baffle weight addition without
an appreciable loss in damping effectiveness.

4. Conical rings offer greater degree of damping than floating
cans, except where the cans carefully cover the liquid surface.

5. The amount of damping produced by both floating cans and conical
rings is strongly dependent upon excitation amplitude.

6. Cans are the only suitable type of float. However, ring baffles
are more reliable and appear to give greater damping.

7. Floats, like baffles, are used mostly to damp liquid motion
however, floats are like partitions, in that their effect on frequency and
damping is constant for all shallow depths.

8. Subdivision by radial walls is much more effective in reducing
the amount of sloshing than subdivision by concentric walls. 1In the case
of a quarter-sectored tank the vibrating liquid mass is reduced to more than
1/2 that of a circular cylinder.

9. Ring baffles are far better as damping devices than conic,

inverted conic or cruciform baffles.
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10. Cross partitions have a greater effect on the eigen-frequencies
than do concentric partitions.

11. Floats should cover the entire cross-sectional area and fill
the zone of oscillation, i.e., to a depth of one-fourth the tank diameter.

12. Floats should be capable of following the changing liquid level.

13. Floats should be capable of adapting to the changing cross-
sectional area of thé container, i.e, the float should not catch-on or cling
to stiffener rings, pipelines or other equipment obstruéting the inner walls
of the tank.

14. Floats should not change the moment of inertia of the liquid
when subjected to roll excitations about the longitudinal axis of the con-
tainer.

15. Partitions should divide the total liquid mass into approximately

equal partial masses thereby effectively reducing the tank diameter.
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LIQUID RESONANT FREQ. w'd/

Effect of hole size and percent perforation
on resonant frequency for a quarter sector tank. (58)

Figure 5-78
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Effect of hole size and percent perforation
on resonant frequency for an eighth sector tank. (58)

Figure 5-79
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Effect of percent perforation and resonant
frequency on the damping ratio as a function of
excitation amplitude for a quarter sector tank.(58)

Figure 5-80
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TABLE A-3

ZEROS ¢ (m=1) OF THE FIRST DERIVATIVE OF THE BESSEL

FUNCTION OF THE FIRST ORDER AND FIRST KIND fJ{(imn) = 0],

n €n n €n n €n

0 1.84119 11 36.89000 22 71.45677
1 5.33144 12 40.03341 23 74.60000
2 8.53631 13 43.17665 24 77.74383
3 11.70600 14 46.31957 25 80.88514
4 14.86359 15 49.46238 26 84.02718
5 18.01553 16 52.60507 27 87.16914
6 21.16440 17 55.74758 28 90.31228
7 24.31145 18 58.89000 29 93.45301
8 27.45751 19 62.03234 30 96.59499
9 30.60194 20 65.17465 31 99.73675
10 33.74397 21 68.31682
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TABLE A-5
ROOTS € n OF THE FIRST DERIVATIVE OF THE BESSEL FUNCTION

OF ORDER 4m AND OF THE FIRST KIND [J’ e =0 L
4m T mn

0 5.31756 13.82109 22.26759
1 9.28240 18.74485 27.71172
2 | 12.68191 22.62927 31.97366
3 15.96411 26.24604 35.87393
4 {19.19603 29.72898 39.58453

5 | 22.40103 33.13145 43.17654
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